戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 ermoautotrophicum, Pyrococcus horikoshii and Archaeoglobus fulgidus.
2 ing Methanobacterium thermoautotrophicum and Archaeoglobus fulgidus.
3 i, Methanobacterium thermoautotrophicum, and Archaeoglobus fulgidus.
4 al structure of a representative CDP-AP from Archaeoglobus fulgidus.
5  subunits in replication factor C (RFC) from Archaeoglobus fulgidus.
6 he three Amt orthologs from the euryarchaeon Archaeoglobus fulgidus.
7 e fraction of the hyperthermophilic archaeon Archaeoglobus fulgidus.
8 tested using CopA, a model Cu(+)-ATPase from Archaeoglobus fulgidus.
9 onsisting of a stand-alone macro domain from Archaeoglobus fulgidus.
10 jannaschii and the sulfate-reducing archaeon Archaeoglobus fulgidus.
11 its of the RFC homologue of the euryarchaeon Archaeoglobus fulgidus.
12  hyperthermophilic sulfate-reducing anaerobe Archaeoglobus fulgidus.
13 components of the hyperthermophilic archaeon Archaeoglobus fulgidus.
14  describe a UDG from the extreme thermophile Archaeoglobus fulgidus.
15 ia pestis, 5% of Escherichia coli K12, 6% of Archaeoglobus fulgidus, 8% of Methanobacterium thermoaut
16 ypic WrbA protein from E. coli and WrbA from Archaeoglobus fulgidus, a hyperthermophilic species from
17                                              Archaeoglobus fulgidus, a hyperthermophilic sulfate-redu
18                                              Archaeoglobus fulgidus, a hyperthermophilic, archaeal su
19 structure of the chromatin protein Alba from Archaeoglobus fulgidus, a substrate for the Sir2 protein
20               The splicing endonuclease from Archaeoglobus fulgidus (AF) belongs to the homodimeric f
21  an Aer HAMP model based on the structure of Archaeoglobus fulgidus Af1503-HAMP, the closest residue
22 member of this family, an FBPase/IMPase from Archaeoglobus fulgidus (AF2372), has been solved.
23 the crystal structure of a Piwi protein from Archaeoglobus fulgidus (AfPiwi) in complex with a small
24 his publication investigates the enzyme from Archaeoglobus fulgidus (Afu Pol-D).
25 e solved structures of a UBIAD1 homolog from Archaeoglobus fulgidus, AfUbiA, in an unliganded form an
26 cosylase from the hyperthermophilic organism Archaeoglobus fulgidus (AFUDG) is responsible for the re
27                  The crystal structure of an Archaeoglobus fulgidus ammonium transporter (AMT) sugges
28 yperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus and characterised its in vitro ac
29 (420)-0:gamma-glutamyl ligase (CofE-AF) from Archaeoglobus fulgidus and its complex with GDP at 2.5 A
30 ned the performance of the FEN1 enzymes from Archaeoglobus fulgidus and Methanococcus jannaschii and
31 omonas aeruginosa) and two archaeal species (Archaeoglobus fulgidus and Pyrococcus horikoshii).
32 rom the archaea Methanococcus jannaschii and Archaeoglobus fulgidus, and from the bacterium Thermotog
33 ulfovibrio vulgaris, Pseudomonas aeruginosa, Archaeoglobus fulgidus, and Methanocaldocococcus jannasc
34 rkeri, Methanobacterium thermoautotrophicum, Archaeoglobus fulgidus, and Mycobacterium smegmatis show
35 smodium falciparum, Tetrahymena thermophila, Archaeoglobus fulgidus, and Mycobacterium tuberculosis.
36 schii, Methanobacterium thermoautotrophicum, Archaeoglobus fulgidus, and Pyrococcus horikoshii) revea
37 barkeri and the closely related euryarchaeon Archaeoglobus fulgidus appeared to be of the Escherichia
38 rate species including Borrelia burgdorferi, Archaeoglobus fulgidus, Arabidopsis thaliana, and Homo s
39 crystal structure of the wild-type mIPS from Archaeoglobus fulgidus at 1.7 A, as well as the crystal
40 S from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus at 1.9 A resolution.
41 lytic domain (P-domain, residues 415-621) of Archaeoglobus fulgidus B-type Lon protease (wtAfLonB) an
42 -based mutational analysis of RNase HII from Archaeoglobus fulgidus, both with and without a bound me
43 pothetical proteins from M. tuberculosis and Archaeoglobus fulgidus, but FGD showed no significant ho
44 n the Bacteria and Archaea domains (Af3 from Archaeoglobus fulgidus, Cd1 from Clostridium difficile,
45        The previous crystal structure of the Archaeoglobus fulgidus complex revealed a symmetric dime
46 wo crystal structures of a SIR2 homolog from Archaeoglobus fulgidus complexed with NAD have been dete
47               The hyperthermophilic archaeon Archaeoglobus fulgidus contains an L-Ala dehydrogenase (
48        The thermophilic, sulfur metabolizing Archaeoglobus fulgidus contains two genes, AF0473 and AF
49 utation) T. maritima CopA, comparing it with Archaeoglobus fulgidus CopA and Ca(2+) ATPase.
50 ansmembrane Cu(+) transport sites present in Archaeoglobus fulgidus CopA.
51                                              Archaeoglobus fulgidus CopB is a member of this subfamil
52 esting both models, the delivery of Cu(+) by Archaeoglobus fulgidus Cu(+) chaperone CopZ to the corre
53                                  Here, using Archaeoglobus fulgidus Cu(+)-ATPase CopA and the C-termi
54 tions of amino acids in these regions of the Archaeoglobus fulgidus Cu(+)-ATPase CopA do not affect A
55 ue SRP19 from the hyperthermophilic archaeon Archaeoglobus fulgidus, designated as Af19, was determin
56    CopA, a thermophilic membrane ATPase from Archaeoglobus fulgidus, drives the outward movement of C
57           The genome of the hyperthermophile Archaeoglobus fulgidus encodes a putative CopZ copper ch
58                            The euryarchaeote Archaeoglobus fulgidus encodes two genes with homology t
59 Cocrystal structures of the class I archaeal Archaeoglobus fulgidus enzyme, poised for addition of C7
60 der range of substrates than the homodimeric Archaeoglobus fulgidus enzyme.
61 allographic studies of the highly homologous Archaeoglobus fulgidus enzyme.
62 microbial genomes (Saccharomyces cerevisiae, Archaeoglobus fulgidus, Escherichia coli, Haemophilus in
63                                              Archaeoglobus fulgidus ferritin (AfFtn) is the only tetr
64 fferences, we refined a crystal structure of Archaeoglobus fulgidus fibrillarin-Nop5p binary complex
65  Tfu-FNO were highly similar to those of the Archaeoglobus fulgidus FNO (Af-FNO).
66 gans (GenBankTM accession number Z69637) and Archaeoglobus fulgidus (GenBankTM accession number AE000
67 AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed i
68 i, Methanobacterium thermoautotrophicum, and Archaeoglobus fulgidus, implying the existence of unreco
69 The atomic structure of archaeal Hel308 from Archaeoglobus fulgidus in complex with DNA was recently
70  of an NAD kinase from the archaeal organism Archaeoglobus fulgidus in complex with its phosphate don
71 the crystal structure of reverse gyrase from Archaeoglobus fulgidus in the presence and absence of nu
72          A gene putatively identified as the Archaeoglobus fulgidus inositol-1-phosphate synthase (IP
73 uaporin AfAQP from sulfide reducing bacteria Archaeoglobus fulgidus into planar membranes and by moni
74                                    CopA from Archaeoglobus fulgidus is a hyperthermophilic ATPase res
75                                    CopA from Archaeoglobus fulgidus is a hyperthermophilic member of
76                                              Archaeoglobus fulgidus is the first sulphur-metabolizing
77             In the sulfate-reducing archaeon Archaeoglobus fulgidus it is a metal-dependent thermozym
78  the three polypeptide domains were found in Archaeoglobus fulgidus, Methanopyrus kandleri, Methanosa
79 hown not only that Methanococcus jannaschii, Archaeoglobus fulgidus, Methanosarcina acetivorans, and
80 acillus subtilis; four anaerobic regulons in Archaeoglobus fulgidus (NarL, NarP, Fnr, and ModE); and
81 that from the protein Af1503 of the archaeon Archaeoglobus fulgidus or the Tsr receptor.
82  characterized the interactions of human and Archaeoglobus fulgidus PCNA trimer with double-stranded
83      Here we report the crystal structure of Archaeoglobus fulgidus Piwi protein bound to double-stra
84 ynthetase variants that recognize engineered Archaeoglobus fulgidus prolyl-tRNAs (Af-tRNA(Pro)) with
85 rom Thermus aquaticus, Thermus thermophilus, Archaeoglobus fulgidus, Pyrococcus furiosus, Methanococc
86                                              Archaeoglobus fulgidus RbcL2, a form III ribulose-1,5-bi
87  organism, strain VC-16 (tentatively called "Archaeoglobus fulgidus") reduces sulphate--the only arch
88 igated some of the biochemical properties of Archaeoglobus fulgidus reverse gyrase.
89                        Crystal structures of Archaeoglobus fulgidus Rio1 and Rio2 have shown that whe
90    Here, we report the crystal structures of Archaeoglobus fulgidus RNase HII in complex with PCNA, a
91                   A protein component of the Archaeoglobus fulgidus RNase P was expressed in Escheric
92 sequences and crystal structures of LamR and Archaeoglobus fulgidus S2p, a non-laminin-binding orthol
93 y scattering (SAXS) solution analyses of the Archaeoglobus fulgidus secretion superfamily ATPase, afG
94                   A crystal structure of the Archaeoglobus fulgidus SepCysS apoenzyme provides inform
95 ibosylation of acetyllysine is solved for an Archaeoglobus fulgidus sirtuin (Af2Sir2).
96                                              Archaeoglobus fulgidus SRP proteins also bound to full-l
97 k response of the hyperthermophilic archaeon Archaeoglobus fulgidus strain VC-16 was studied using wh
98 vate, closely resembles that of the archaeon Archaeoglobus fulgidus, strongly suggesting a common ori
99  the glycine betaine-binding protein ProX of Archaeoglobus fulgidus; the resultant model indicated th
100 ere we describe the crystal structure of the Archaeoglobus fulgidus tRNA nucleotidyltransferase in co
101 9 from the sulfate-reducing hyperthermophile Archaeoglobus fulgidus was determined at 1.7 A resolutio
102 conserved in archaeal homologs, AfAmt-2 from Archaeoglobus fulgidus was expressed in yeast.
103 oprotein) encoded by AF1518 in the genome of Archaeoglobus fulgidus was produced in Escherichia coli
104                  The Af1503 HAMP domain from Archaeoglobus fulgidus was recently shown to be a four-h
105 A gene sequences from Thermovirga lienii and Archaeoglobus fulgidus were cloned and used to generate
106 zymes from Methanocaldococcus jannaschii and Archaeoglobus fulgidus were not.
107 rs of FENs derived from T5 bacteriophage and Archaeoglobus fulgidus were studied with a range of sing
108 sequences, from Methanococcus jannaschii and Archaeoglobus fulgidus, were analyzed in order to ascert
109 ute in many hyperthermophilic archaea (e.g., Archaeoglobus fulgidus) when the cells are grown above 8
110 o deduced sequences in Bacillus subtilis and Archaeoglobus fulgidus, which also lack some typical Rub
111 Here, we determined crystal structures of an Archaeoglobus fulgidus XPB homolog (AfXPB) that characte

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top