戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1          Merr.) and its compatible symbiont, Bradyrhizobium japonicum.
2 ing life styles of the alpha-proteobacterium Bradyrhizobium japonicum.
3  10, 12, 16, and 20 d after inoculation with Bradyrhizobium japonicum.
4 t, between 12 and 96 h post inoculation with Bradyrhizobium japonicum.
5 with the nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum.
6  to inoculation with the symbiotic bacterium Bradyrhizobium japonicum.
7 ir ability to induce the nodulation genes of Bradyrhizobium japonicum.
8 orhizobium meliloti, Mesorhizobium loti, and Bradyrhizobium japonicum.
9 Escherichia coli and equivalent cyc genes of Bradyrhizobium japonicum.
10 iotic root nodules elicited by the bacterium Bradyrhizobium japonicum.
11 in the N(2)-fixing, H(2)-oxidizing bacterium Bradyrhizobium japonicum.
12 genase, was cloned from the soybean symbiont Bradyrhizobium japonicum.
13                                              Bradyrhizobium japonicum, a diazotropic symbiont of soyb
14                                              Bradyrhizobium japonicum, a symbiotic nitrogen-fixing ba
15                                              Bradyrhizobium japonicum ALAD* is an engineered derivati
16  A resolution crystal structure of PutA from Bradyrhizobium japonicum, along with data from small-ang
17  nodA, nodB, nodD1, nodD2, and nolA genes of Bradyrhizobium japonicum and Bradyrhizobium elkanii.
18 restrict nodulation with specific strains of Bradyrhizobium japonicum and Sinorhizobium fredii, respe
19 is a global regulator of iron homeostasis in Bradyrhizobium japonicum, and a subset of genes within t
20      Here, we identify the mntH homologue of Bradyrhizobium japonicum, and demonstrate that it is ess
21 and microaerobic metabolism in the bacterium Bradyrhizobium japonicum, and evidence suggests that hem
22 bacteria Thermosynechococcus elongatus BP-1, Bradyrhizobium japonicum, and Zymomonas mobilis and clon
23                      The nodulation genes of Bradyrhizobium japonicum are essential for infection and
24 utative ferric siderophore receptor genes in Bradyrhizobium japonicum are positively controlled by th
25 entified mnoP in the Gram-negative bacterium Bradyrhizobium japonicum as a gene coregulated with the
26 study, we show that the affinity of Fur from Bradyrhizobium japonicum (BjFur) for its target DNA incr
27 A enzymes by examining the PutA protein from Bradyrhizobium japonicum (BjPutA).
28                                              Bradyrhizobium japonicum can use heme as an iron source,
29         Here, we show that aerobically grown Bradyrhizobium japonicum cells express a single catalase
30 ition of chitin and lipo-chitin oligomers to Bradyrhizobium japonicum cultures resulted in a signific
31                            Here we show that Bradyrhizobium japonicum cytochrome c550 polypeptide acc
32                             In the bacterium Bradyrhizobium japonicum, expression of the gene encodin
33 Consistent with this, immunoblot analyses of Bradyrhizobium japonicum extracts with a polyclonal anti
34 ns, we replaced this residue with alanine in Bradyrhizobium japonicum FixL and examined the results o
35 ssessed the contributions of this residue in Bradyrhizobium japonicum FixL by determining the effects
36             Recent structural studies of the Bradyrhizobium japonicum FixL heme domain (BjFixLH) have
37                            Structures of the Bradyrhizobium japonicum FixL heme domain have been dete
38 arison of the structures of two forms of the Bradyrhizobium japonicum FixL heme domain, one in the "o
39                          Several recombinant Bradyrhizobium japonicum FixL heme domains (BjFixLH) hav
40                                              Bradyrhizobium japonicum FixL is a modular oxygen sensor
41 rebinding to two forms of the heme domain of Bradyrhizobium japonicum FixL.
42                          Here, we identified Bradyrhizobium japonicum frcB (bll3557) as a gene adjace
43                                              Bradyrhizobium japonicum Fur mediates manganese-responsi
44 y diverse enolase superfamily encoded by the Bradyrhizobium japonicum genome (bll6730; GI:27381841).
45               In this study, we identified a Bradyrhizobium japonicum genomic library clone that comp
46                       Microarray analysis of Bradyrhizobium japonicum grown under copper limitation u
47 of hydrogenase structural gene expression in Bradyrhizobium japonicum have been investigated.
48 he Brucella BhuQ protein is a homolog of the Bradyrhizobium japonicum heme oxygenases HmuD and HmuQ.
49 nodulation signal (nod signal) purified from Bradyrhizobium japonicum induced nodule primordia on soy
50 t changes in their expression in response to Bradyrhizobium japonicum infection and in representative
51 oil bacteria (e.g. soybean [Glycine max] and Bradyrhizobium japonicum) initiated by the infection of
52     Utilization of heme as an iron source by Bradyrhizobium japonicum involves induction of the outer
53                                              Bradyrhizobium japonicum Irr is a conditionally stable t
54 s by the nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum is a complex process coordinate
55 e iron response regulator (Irr) protein from Bradyrhizobium japonicum is a conditionally stable prote
56                          The FixL protein of Bradyrhizobium japonicum is a dimeric oxygen sensor resp
57                                              Bradyrhizobium japonicum is a facultative chemoautotroph
58                        The HypB protein from Bradyrhizobium japonicum is a metal-binding GTPase requi
59                                    FixL from Bradyrhizobium japonicum is a PAS sensor protein in whic
60                                              Bradyrhizobium japonicum is a symbiotic bacterium that n
61 >3),beta-(1-->6)-D-glucan synthesis locus of Bradyrhizobium japonicum is composed of at least two gen
62           The Irr protein from the bacterium Bradyrhizobium japonicum is expressed under iron limitat
63                            The irr gene from Bradyrhizobium japonicum is under the control of Fur.
64 nfection of soybean roots by nitrogen-fixing Bradyrhizobium japonicum leads to expression of plant no
65                           Here, we show that Bradyrhizobium japonicum MbfA (Blr7895) is an inner memb
66                                           In Bradyrhizobium japonicum, members of two global regulato
67                                              Bradyrhizobium japonicum Mur and Escherichia coli Fur ar
68                                            A Bradyrhizobium japonicum mutant defective in the gene en
69                                            A Bradyrhizobium japonicum mutant defective in the high-af
70 of an active cyt cbb3 oxidase, and unlike in Bradyrhizobium japonicum, no active CcoN-CcoO subcomplex
71                                              Bradyrhizobium japonicum nod gene expression was previou
72 the effect of the inoculation of G. max with Bradyrhizobium japonicum on the metabolite profile and a
73 ivum) seed lectin (PSL) were inoculated with Bradyrhizobium japonicum or Rhizobium leguminosarum bv v
74 reas human, pea, Pseudomonas aeruginosa, and Bradyrhizobium japonicum PBGS are insensitive to inhibit
75                                              Bradyrhizobium japonicum porphobilinogen synthase (B. ja
76                                              Bradyrhizobium japonicum possessed lipid A species with
77 tagenesis was used to study the roles of two Bradyrhizobium japonicum proteins, HoxX and HoxA, in hyd
78 icroM to 2.4 mM for human, Escherichia coli, Bradyrhizobium japonicum, Pseudomonas aeruginosa, and pe
79 tion of the iron response regulator (Irr) in Bradyrhizobium japonicum raised the question of whether
80 responsive degradation of its counterpart in Bradyrhizobium japonicum, readily detectable levels of I
81                                The PBGS from Bradyrhizobium japonicum requires Mg(II) in catalytic me
82 s (e.g. soybean) and rhizobia bacteria (e.g. Bradyrhizobium japonicum) results in root nodules where
83 l SWEET homologs with only 3-TM and that the Bradyrhizobium japonicum SemiSWEET1, like Arabidopsis SW
84                         The Irr protein from Bradyrhizobium japonicum senses iron through the status
85  L. cv Merr.) seeds inoculated with a mutant Bradyrhizobium japonicum strain unable to catabolize Pro
86                                   However, a Bradyrhizobium japonicum sucA mutant that is missing alp
87                                              Bradyrhizobium japonicum synthesizes periplasmic cyclic
88 We isolated a mutant strain of the bacterium Bradyrhizobium japonicum that, under iron limitation, ac
89 nt of a physical framework for the genome of Bradyrhizobium japonicum, the nitrogen-fixing symbiont o
90 mprehensive understanding of the response of Bradyrhizobium japonicum to drought.
91 l structure of ent-kaur-16-ene synthase from Bradyrhizobium japonicum, together with the results of a
92                                          The Bradyrhizobium japonicum transcriptional regulator Irr (
93                                              Bradyrhizobium japonicum transports oligopeptides and th
94 o guanine deaminases from disparate sources (Bradyrhizobium japonicum USDA 110 and Homo sapiens) that
95                                The bacterium Bradyrhizobium japonicum USDA110 does not synthesize sid
96 e report that BjaI from the soybean symbiont Bradyrhizobium japonicum USDA110 is closely related to R
97                           A mutant strain of Bradyrhizobium japonicum USDA110 lacking isocitrate dehy
98 ketoglutarate dehydrogenase, was cloned from Bradyrhizobium japonicum USDA110, and its nucleotide seq
99 hitin oligosaccharide Nod signal produced by Bradyrhizobium japonicum was also shown to be a competit
100 e nitrogen-fixing symbiotic (rhizo)bacterium Bradyrhizobium japonicum was found to carry adjacent gen
101  and directly downstream of the hypB gene of Bradyrhizobium japonicum was shown by mutational analysi
102 ere, we show that cytochrome c1 protein from Bradyrhizobium japonicum was strongly affected by the ir
103 soybean and its nitrogen-fixing endosymbiont Bradyrhizobium japonicum, we wanted to assess the role o
104         Expression of PutA(Ec) and PutA from Bradyrhizobium japonicum, which exhibit low oxygen react
105 c L. corniculatus plant roots in response to Bradyrhizobium japonicum, which nodulates soybean and no
106 soybean and its nitrogen-fixing endosymbiont Bradyrhizobium japonicum, yet little is known about rhiz

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top