戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 BM HSC compartment by expression of CD114 (G-CSF receptor).
2 G-CSF signalling, we coexpressed exogenous G-CSF receptor.
3 through the isolated alpha subunit of the GM-CSF receptor.
4 n containing the first tyrosine residue of G-CSF receptor.
5 -CSF required the C-terminal region of the G-CSF receptor.
6 e differentiation, as well as mRNA for the M-CSF receptor.
7 mmediate early genes, and induction of the M-CSF receptor.
8  mutation inhibited the degradation of the M-CSF receptor.
9 active structures that could recognize the G-CSF receptor.
10  the association of these enzymes with the G-CSF receptor.
11 e surface required for dimerization of the G-CSF receptor.
12 n, but not Hck, was physically coupled to GM-CSF receptor.
13 nduction of gene transcription through the G-CSF receptor.
14 s blocked by inhibiting activation of the GM-CSF receptor.
15 ons in GM-CSF that reduced binding to the GM-CSF receptor.
16  differentiation and activation, including M-CSF receptor.
17 ing the ligand-binding alpha chain of the GM-CSF receptor.
18 al complex between alpha9beta1 and ligated G-CSF receptor.
19 ing the common beta chain (Beta c) of the GM-CSF receptor.
20 t is independent of signaling through the GM-CSF receptor.
21 n confers signal specificity for IL-3 and GM-CSF receptors.
22 stricted to cells or tissues that express GM-CSF receptors.
23 L-5 share a common ss-chain with IL-3 and GM-CSF receptors.
24  G- and GM-CSF receptors and no detectable M-CSF receptors.
25 ndicating that they express high-affinity GM-CSF receptors.
26 Abl bound to the betac chain of IL-3/IL-5/GM-CSF receptors.
27 an up-regulation of surface expression of GM-CSF receptors.
28 -stimulating factor (G-CSF) acting via the G-CSF receptors.
29 yte-macrophage colony-stimulating factor (GM-CSF) receptor.
30 the granulocyte colony-stimulating factor (G-CSF) receptor.
31 yte macrophage colony stimulating factor (GM-CSF) receptor.
32 the granulocyte colony-stimulating factor (G-CSF) receptor.
33 ts genetically engineered to express human M-CSF receptors (3T3-FMS cells) and human monocytes.
34 IH 3T3 fibroblasts expressing mutant human M-CSF receptors (3T3-FMS(Y809F)) that fail to activate Ras
35 he IL-3 receptor shares with the IL-5 and GM-CSF receptors a common signal transducing beta-chain.
36  the macrophage colony-stimulating factor (M-CSF) receptor, a highly related receptor tyrosine kinase
37 the Granulocyte-Colony-Stimulating Factor (G-CSF) receptor activates non-receptor protein tyrosine ki
38  line RAW264; 2) SHIP2 associated with the M-CSF receptor after M-CSF stimulation; and 3) SHIP2 assoc
39 al differences suggested that the IL-3 and G-CSF receptor agonist domains within the MPO chimera may
40 L-3 receptor agonists linked with a common G-CSF receptor agonist have been examined for their IL-3 r
41 quences to engineer chimeric dual IL-3 and G-CSF receptor agonists in which the relative spatial orie
42 and granulocyte colony-stimulating factor (G-CSF) receptor agonists that are superior in comparison t
43 and granulocyte colony-stimulating factor (G-CSF) receptor agonists.
44                           Ablation of the GM-CSF receptor alleviated the monocyte response and inhibi
45 ulations of hematopoietic and endothelial GM-CSF receptor alpha (GM-CSFRalpha)-positive cells.
46 ell line WT-19 transfected with the human GM-CSF receptor alpha and beta subunits (GM-CSFRalpha and b
47                     The gene encoding the GM-CSF receptor alpha subunit (CSF2RA) is located on X and
48 mprising the extracellular domain of the hGM-CSF receptor alpha subunit (hGM Ralpha) fused to the int
49 tein of 198 amino acids, designated GRAP (GM-CSF receptor alpha subunit-associated protein), was isol
50                       Variant and mutated GM-CSF receptor alpha subunits, along with the beta subunit
51  with protein kinase CbetaII (PKCbetaII), GM-CSF receptor alpha-chain, and two actin-associated prote
52 yte-macrophage colony-stimulating factor (GM-CSF) receptor alpha-chain (CSF2RA) deficiency is a rare,
53  and the role of the alpha subunit of the GM-CSF receptor (alpha GMR) in modulating transporter activ
54 d that an elevated proportion of immature GM-CSF receptor-alpha(R) subunit-expressing cells were pres
55 lular portion of the alpha subunit of the GM-CSF receptor (alphaGMR) to search for interacting protei
56 e late interactions occurring between the GM-CSF receptor and activated eosinophil signaling molecule
57  from impaired signaling downstream of the M-CSF receptor and alpha(v)beta3 integrin.
58  mice carrying targeted mutations of their G-CSF receptor and displaying markedly different G-CSF-ind
59 eral sympathetic nerve neurons express the G-CSF receptor and ex vivo stimulation of peripheral sympa
60           Oval cells were found to express G-CSF receptor and G-CSF was produced within the regenerat
61 ing, the data support the concept that the G-CSF receptor and gp130 are both structurally and functio
62 ng the interaction between ICAM-1 and the GM-CSF receptor and highlight the importance of targeting I
63 l of the G-CSF-expressing lines lacked the G-CSF receptor and injections of purified recombinant G-CS
64 ced expression of c-fms, which encodes the M-CSF receptor and is obligatory for macrophage differenti
65 herefore, the physical coupling of Lyn to GM-CSF receptor and its early activation are required for i
66 s chimera to bind human cells through the GM-CSF receptor and prevent apoptosis.
67 that resident spinal microglia express the G-CSF receptor and that G-CSF signaling mediates microglia
68 lism, which in turn promoted expression of M-CSF receptor and transcription factors PU.1 and IRF8, th
69 As encoding varying portions of the human GM-CSF receptor and/or beta chains.
70    Since bone marrow myeloid cells express G-CSF receptors and G-CSF rapidly reduces CXCR4 expression
71  Ba/F3 cells expressing both the G-CSF and M-CSF receptors and in lineage-negative murine marrow cell
72 ll cells had minimal expression of G- and GM-CSF receptors and no detectable M-CSF receptors.
73 w that the LNCaP cells express functional GM-CSF receptors and that prostatic carcinomas have promine
74 cell lines were transfected with the human G-CSF receptor, and stable transfectants were studied.
75 orms a complex with the beta-chain of the GM-CSF receptor, and this interaction involves the first pa
76 the granulocyte colony-stimulating factor (G-CSF) receptor, and the granulocyte-macrophage colony-sti
77 pl, granulocyte-colony-stimulating factor [G-CSF] receptor, and Flt-3) were inserted into mouse prima
78                Truncating mutations of the G-CSF receptor are found during disease course in nearly h
79 at two distinct cytoplasmic regions of the G-CSF receptor are involved in the regulation of the inten
80 he membrane-proximal 55 amino acids of the G-CSF receptor are sufficient for activation of Stat5, the
81                    Although the GM-CSF and M-CSF receptors are unrelated, both couple to Ras-dependen
82 Truncation of the carboxyl terminus of the G-CSF receptor, as seen in patients with acute myeloid leu
83 uce a recombinant fusion toxin that kills GM-CSF receptor-bearing cells.
84 ceptor, such as monocytes, as well as for GM-CSF receptor-bearing myeloid cell lines, HL60 (promyelom
85 increased tyrosine phosphorylation of the GM-CSF receptor beta chain (betac), STAT5, and other signal
86                        Mice that lack the GM-CSF receptor beta chain (GM-CSFRbeta) developed invasive
87 ative substrates SHPTP-2, Stat-5, and the GM-CSF receptor beta(c) subunit.
88  eosinophils, we have identified that the GM-CSF receptor beta-chain (GMRbeta) interacted with ICAM-1
89 yte-macrophage colony-stimulating factor (GM-CSF) receptor-beta-deficient (Csf2rb(-/-)) mice that dev
90 CP-1), matrix metalloproteinase 9 (MMP-9), G-CSF receptor, beta2 integrins, or selectins responded to
91 ns displayed increased phosphorylation of GM-CSF receptor betac subunit in response to stimulation, a
92 (Gmcsf) or the beta common subunit of the GM-CSF receptor (betac) are inactivated display normal stea
93 We show that the common beta chain of the GM-CSF receptor (betac) is dispensable for Nras(G12D/+) HSC
94                               Importantly, G-CSF receptor blockade did not adversely affect viral cle
95  describe for the first time the effect of G-CSF receptor blockade in a therapeutic model of inflamma
96 imals neutropenic, suggesting an effect of G-CSF receptor blockade on neutrophil homing to inflammato
97  Shp2-deficient cells transfected with the G-CSF receptor but intact in cells expressing phosphatase-
98  myeloid leukemia progenitors bearing the GM-CSF receptor, but not normal marrow progenitors.
99 r c-Jun could promote the induction of the M-CSF receptor by collaborating with PU.1.
100  partner CBF beta synergistically activate M-CSF receptor by more then 60 fold.
101                                  The CSF-1/M-CSF receptor c-fms and RAFTK appeared to associate in re
102 -regulating cell surface expression of the M-CSF receptor c-Fms by a matrix metalloprotease- and MAPK
103 n of Tyr-721, the PI3K binding site in the M-CSF receptor c-Fms, fails to suppress cytoskeletal remod
104  of STAT1:STAT3:STAT5 activated by various G-CSF receptor C-terminal deletion mutants.
105  the macrophage colony-stimulating factor (M-CSF) receptor c-Fms.
106  by the kinetic appearance of mRNA for the M-CSF receptor, c-fms, at day 3 following culture initiati
107 eated them with a mAb directed against the M-CSF receptor, c-Fms.
108 he presence of at least 100 high affinity GM-CSF receptors/cell and the absence of overexpressed anti
109 y mapped the Lyn-binding site of the IL-5/GM-CSF receptor common beta (beta c) subunit.
110 osinophil peroxidase, CCR3, the IL-3/IL-5/GM-CSF receptor common beta-chain, and the transcription fa
111 s constitutively express higher levels of GM-CSF receptor compared with CD103(+) DCs and are thus sel
112  exhibited a higher level of expression of M-CSF receptor compared with normal controls.
113 the receptor by nearly 15 degrees C in the G-CSF/receptor complex.
114                                       The GM-CSF receptor consists of two subunits: GMRalpha, which b
115 yte-macrophage colony-stimulating factor (GM-CSF) receptor consists of 2 glycoprotein subunits, GMRal
116 tations in the extracellular domain of the G-CSF receptor (CSF3R) have been reported only in severe c
117 he membrane-proximal 55 amino acids of the G-CSF receptor cytoplasmic domain are sufficient for media
118                                            G-CSF receptor deficiency and CXCL1 blockade suppressed my
119 t not flt-3 ligand is markedly impaired in G-CSF receptor-deficient (G-CSFR-deficient) mice.
120                                 G-CSF- and G-CSF receptor-deficient mice are profoundly protected in
121 lar proteinosis in mice transplanted with GM-Csf-receptor-deficient progenitors.
122  and IL-6 or by retroviral transduction of G-CSF receptors, demonstrating that loss of both of these
123                M-CSF-activated AMPK is via M-CSF receptor-dependent reactive oxygen species productio
124 nism by which the carboxyl terminus of the G-CSF receptor down-regulates G-CSF-induced Stat activatio
125 SF monoclonal or polyclonal Abs or soluble M-CSF receptors, dramatically inhibited HIV-1 replication
126  Lyn-deficient DT40 cells that express the G-CSF receptor (DT40GR) do not demonstrate G-CSF-induced m
127 yte-macrophage colony-stimulating factor (GM-CSF) receptors, ectopically expressed in FDCP-mix multip
128                                      These M-CSF receptor events correlated with activation of the se
129 activation mediated by a carboxy truncated G-CSF receptor, expressed in patients with acute myeloid l
130 ependent coactivator of PU.1, resulting in M-CSF receptor expression and development of the monocytic
131  macrophage immune function by decreasing GM-CSF receptor expression and downstream PU.1 nuclear bind
132                        The upregulation of M-CSF receptor expression by AML1-ETO may contribute to th
133  exhibited a significantly higher level of M-CSF receptor expression than U937 cells.
134                                 Endogenous M-CSF receptor expression was examined in Kasumi-1 cells,
135  that prostatic carcinomas have prominent GM-CSF receptor expression.
136 orrelate with the reduction in bone marrow G-CSF receptor expression.
137 factor (TNF), and colony-stimulating factor (CSF) receptor expression suggest that the release of ext
138 o liver repopulation, as well as the G-CSF/G-CSF-receptor expression levels were evaluated.
139 nous macrophage colony-stimulating factor (M-CSF) receptor, Fms, we have analyzed the role of a new m
140 d by macrophage colony-stimulating factor (M-CSF), receptor for activation of NF-kappa B ligand (RANK
141                                Defects in GM-CSF receptor function disrupt surfactant clearance, caus
142 of N-glycosylation of the beta subunit on GM-CSF receptor function.
143 ia (AML) associated with a mutation of the G-CSF receptor (G-CSF-R) developed in a patient with SCN m
144                                        The G-CSF receptor (G-CSFR) activates the Jak/STAT pathway, al
145                Truncation mutations of the G-CSF receptor (G-CSFR) are associated with the developmen
146 he membrane-proximal 87 amino acids of the G-CSF receptor (G-CSFR) are sufficient to mediate this res
147                                        The G-CSF receptor (G-CSFR) belongs to the superfamily of the
148  that truncate the cytoplasmic tail of the G-CSF receptor (G-CSFR) have been detected.
149                           Mutations in the G-CSF receptor (G-CSFR) in patients with severe congenital
150 n the expression of truncated forms of the G-CSF receptor (G-CSFR) protein.
151 11b(+) myeloid cells, is known to regulate G-CSF receptor (G-CSFR) signaling, we hypothesized that CE
152  we describe a system to study the role of G-CSF receptor (G-CSFR) signals in granulocytic differenti
153 ted mice with a targeted mutation of their G-CSF receptor (G-CSFR) such that the cytoplasmic (signali
154 tion mutations of CSF3R, which encodes the G-CSF receptor (G-CSFR), are implicated in leukemic progre
155                               We use mixed G-CSF receptor (G-CSFR)-deficient bone marrow chimeras to
156                                    Because G-CSF receptor (G-CSFR)-deficient mice do not have the exp
157 progenitor mobilization was examined using G-CSF receptor (G-CSFR)-deficient mice.
158 is known to be marked by expression of the G-CSF receptor (G-CSFR).
159 uman fibrosarcoma cell line expressing the G-CSF receptor, G-CSF induces the tyrosine phosphorylation
160 strate elevated risk with mutations in the G-CSF receptor gene and a specific mutation in the ELANE g
161         SCN patients with mutations in the G-CSF receptor gene are predisposed to acute myeloid leuke
162 sociation of auto-antibodies to GM-CSF or GM-CSF receptor gene mutations with PAP has implicated GM-C
163  has been shown to harbor mutations in the G-CSF receptor gene that resulted in the truncation of the
164 Palpha, and CBF, regulate the NE, MPO, and M-CSF Receptor genes.
165 and granulocyte colony-stimulating factor (G-CSF) receptor genes by 2.5-, 1.8-, and 1.6-fold, respect
166 proteins or the common beta chain for the GM-CSF receptor (GM-CSFR) are causal.
167 ing to the alpha and beta subunits of the GM-CSF receptor (GM-CSFRalpha and betac, respectively).
168 8 through 400 of the alpha subunit of the GM-CSF receptor (GM-R alpha) [IL-3R alpha/GM-R alpha] or th
169 ssion levels of uPA receptors (uPARs) and GM-CSF receptors (GM-CSFRs) as well as with total uPA level
170 yte-macrophage colony-stimulating factor (GM-CSF) receptor (GM-CSFr) and the intracellular domain of
171 -Cbl (henceforth referred to as Cbl) as a GM-CSF receptor (GMR) adaptor protein that targets Src for
172 xerts its effects by interaction with the GM-CSF receptor (GMR) on the surface of responsive cells.
173  of mature host defense cells through the GM-CSF receptor (GMR), which is composed of alpha (alphaGMR
174 ation between the tyrosine phosphorylated GM-CSF receptor (GMR)-beta c chain and Shc in vivo.
175 yte-macrophage colony-stimulating factor (GM-CSF) receptor (GMR) consists of an alpha (GMRalpha) and
176 yte-macrophage colony-stimulating factor (GM-CSF) receptor (GMR) is a heterodimeric receptor expresse
177 yte-macrophage colony-stimulating factor (GM-CSF) receptor has several isoforms that result from alte
178          Because patients with a truncated G-CSF receptor have a high risk of developing acute myeloi
179 mice with the ubiquitous transgenic human GM-CSF receptor (hGM-CSFR) were used for the analysis.
180 d by IL-3 and granulocyte-macrophage CSF (GM-CSF) receptors (IL-3R and GM-CSFR).
181                                           GM-CSF receptor immunoreactivity was found on neurons withi
182 ntly decreased membrane expression of the GM-CSF receptor in alveolar macrophages.
183 es the actin-linkage of integrins and the GM-CSF receptor in dendritic cells.
184 coding the alpha and beta subunits of the GM-CSF receptor in LNCaP cells, and the presence of the alp
185  we have restored expression of the G- and M-CSF receptors in PU.1-deficient cells using retroviral v
186 yte-macrophage colony-stimulating factor (GM-CSF) receptor in the human prostate carcinoma cell line
187 ivated by G-CSF in cells expressing the wt G-CSF receptor, in addition to the previously reported STA
188  used a retroviral vector to transduce the G-CSF receptor into MO7e cells, which are known to express
189                         Indeed, the human GM-CSF receptor is a good target because it is overexpresse
190                                       The GM-CSF receptor is composed of two subunits, alpha and beta
191                             The transduced G-CSF receptor is functionally active, and the resultant M
192                               However, the G-CSF receptor is not expressed on osteoblasts; accordingl
193  First, myeloid-specific expression of the M-CSF receptor is regulated transcriptionally by three fac
194 onstrate that the carboxyl terminus of the G-CSF receptor is required for SHP-1 down-regulation of St
195 The granulocyte colony-stimulating factor (G-CSF) receptor is expressed exclusively in myeloid cells
196  the macrophage colony-stimulating factor (M-CSF) receptor is regulated by three transcription factor
197 that the chimeric protein binds the human GM-CSF receptor, is endocytosed, and appears to reach the c
198 e RNA: Emr1 (F4/80), Itgam (CD11b), Csf1r (M-CSF Receptor), Itgal (CD11a), Tnf, and Nos2 Additionally
199 signaling through the KGF receptor/GM-CSF/GM-CSF receptor/JAK-STAT axis.
200 odel of hematopoietic deficiency, T(-) and G-CSF-receptor knock-out (GR(-)) mice were crossed, and F1
201 g a granulocyte-colony stimulating factor (G-CSF) receptor knockout mouse model in combination with b
202 cells of wild-type mice, activation of the G-CSF receptor leads to upregulation of cyclin D3.
203 d in HIV-1-infected donors despite normal GM-CSF receptor levels.
204 t SHIP-1 was involved in the regulation of M-CSF receptor (M-CSF-R)-induced Akt activation.
205  the level of receptor expression and that M-CSF receptor (M-CSFR) may be used as an early marker of
206 or 1 (CSF-1) receptor (CSF-1R, or macrophage CSF receptor [M-CSFR]) is the primary regulator of the p
207 ains, domains with the L1 linker had lower G-CSF receptor-mediated proliferative activities and confo
208 or functional importance and redundancy of G-CSF receptor-mediated signaling in human granulopoiesis.
209      To investigate the role Gab2 plays in G-CSF receptor-mediated signaling, we have analyzed its ac
210 ith rGM-CSF via the upper airway restored GM-CSF receptor membrane expression as well as PU.1 protein
211    This phenotype is distinct from that of G-CSF receptor-/- mice, suggesting that other genes are li
212                                Bone marrow G-CSF receptor mRNA levels and G-CSF-stimulated proliferat
213 n was associated with the up-regulation of G-CSF receptor mRNA, and the combination of GM-CSF and G-C
214 hat granulocyte colony-stimulating factor (G-CSF) receptor mRNA was undetectable and granulocyte matu
215 n of the myeloperoxidase, lactoferrin, and G-CSF receptor mRNAs.
216 d by macrophage colony-stimulating factor (M-CSF) receptor mutations.
217 the granulocyte-colony-stimulating factor (G-CSF) receptor, neutrophil elastase, and myeloperoxidase.
218                                           GM-CSF-receptor occupancy at 0.7 nmol/L GM-CSF-ligand conce
219 he induction of apoptosis correlates with GM-CSF-receptor occupancy at low ligand concentrations.
220 n receptor-binding affinity, induction of GM-CSF receptor oligomerization and signaling capacity.
221 tively inhibited binding of GM-CSF to the GM-CSF receptor on HL-60 cells and demonstrated antagonist
222  that recombinant GM-CSF-Bcl-XL binds the GM-CSF receptor on human monocyte/macrophage cells and bone
223 easurements of the number and affinity of GM-CSF receptors on cells from the same samples showed no c
224 ecules that bind and activate the IL-3 and G-CSF receptors on hematopoietic cells.
225  up-regulates the expression of functional M-CSF receptors on monocytes.
226 his may reflect the presence of functional G-CSF receptors on other cell types and tissues, as well a
227 o be explained by an increased density of GM-CSF receptors on these cells.
228 ls stably expressing either wild-type (wt) G-CSF receptor or a series of C-terminal deletion mutants.
229 SF, although some may have had defects in GM-CSF receptor or signal-transduction mechanisms.
230 from macrophage colony-stimulating factor (M-CSF) receptors or Fc receptors to the actin cytoskeleton
231                                            G-CSF receptor positive (aka G-CSFr(+) or CD114(+)) cells
232 uman macrophage colony-stimulating factor (M-CSF) receptor presents an excellent model with which we
233             Cells expressing the truncated G-CSF receptor produced more ROSs than those with the full
234 -O-tetradecanoylphorbol-13-acetate-induced M-CSF receptor promoter activity during monocytic differen
235 o found two regions that are important for G-CSF receptor promoter activity.
236 s the ability of PU.1 to transactivate the M-CSF receptor promoter as well as a minimal thymidine kin
237        c-Jun does not directly bind to the M-CSF receptor promoter but associates via its basic domai
238 differentiation, but the monocyte-specific M-CSF receptor promoter has no AP-1 consensus binding site
239 hown that AML1 and C/EBPalpha activate the M-CSF receptor promoter in a synergistic manner.
240                 A 1,391-bp fragment of the G-CSF receptor promoter is both active in myeloid cell lin
241 other functionally important region of the G-CSF receptor promoter is in the 5' untranslated region,
242  DNA binding to and transactivation of the M-CSF receptor promoter, a direct PU.1 target gene, were d
243 s interacting with critical regions of the M-CSF receptor promoter, including PU.1 and AML1.PU.1 is e
244  work synergistically to transactivate the M-CSF receptor promoter, thus exhibiting a different activ
245  the macrophage colony-stimulating factor (M-CSF) receptor promoter.
246                                       Anti-G-CSF receptor rapidly halted the progression of establish
247 uman lymphocytes expressing high affinity GM-CSF receptors responded to alpha GMR antibody with incre
248 p30 repressed expression of the endogenous G-CSF receptor several-fold.
249 yte-macrophage colony-stimulating factor (GM-CSF) receptors share a common beta chain (beta(c)), and
250  with normal, hPAP-iPS-Mphis had impaired GM-CSF receptor signaling and reduced GM-CSF-dependent gene
251                            Restoration of GM-CSF receptor signaling corrected the surfactant clearanc
252                             Abrogation of GM-CSF receptor signaling in adoptive transfer recipients o
253  investigate the actions of blocking G-CSF/G-CSF receptor signaling in inflammatory disease, and as a
254 lopoiesis-specific mechanism downstream of G-CSF receptor signaling that leads to LEF-1 downregulatio
255   Despite abundant lung GM-CSF and intact GM-CSF receptor signaling, PPAR-gamma was not sufficiently
256 thereby inhibits STAT3 phosphorylation and G-CSF receptor signaling.
257 tact STAT3 upregulation, characteristic of G-CSF receptor signaling.
258  correlated that with wild-type and mutant G-CSF receptors stably expressed in the murine factor-depe
259 terns by Gr-1 antigen expression and their G-CSF receptor status.
260 ab2, Gab3 is tyrosine phosphorylated after M-CSF receptor stimulation and associates transiently with
261 93T cells transfected with alpha and beta GM-CSF receptor subunits (alphaGMR and betaGMR), GM-CSF-ind
262 hat depended on the ectopic expression of GM-CSF receptor subunits by tumors.
263 moattractant for native cells bearing the GM-CSF receptor, such as monocytes, as well as for GM-CSF r
264  hematopoietic growth factor receptor, the M-CSF receptor, suggesting a mechanism of how the AML1 fus
265  blocking neutrophil trafficking with anti-G-CSF receptor suppressed local production of proinflammat
266                   This leads to increased GM-CSF receptor/Syk signalling, and to the induction of a t
267 nic mice with a targeted mutation of their G-CSF receptor (termed d715F) that abolishes G-CSF-depende
268 f the biochemical properties of mammalian GM-CSF receptors that are required for efficient binding of
269  the macrophage colony-stimulating factor (M-CSF) receptor, the granulocyte colony-stimulating factor
270 m an inflammatory phenotype following anti-G-CSF receptor therapy in collagen Ab-induced arthritis.
271  the expression and internalization of the M-CSF receptor, thus overriding the IL-6/M-CSF pathway.
272 the requirement for signaling through the GM-CSF receptor to initiate and sustain this MPD by generat
273  We conducted dynamic kinetic analyses of GM-CSF receptors to define the role of GMRbeta in the inter
274                      We show here that the G-CSF receptor transcription start site is identical in ea
275                           We established a G-CSF receptor-transduced promyelocytic cell line, EPRO-Gr
276                                        The G-CSF receptor transduces signals that regulate the prolif
277  in the blood and arthritic joints of anti-G-CSF receptor-treated mice showed alterations in cell adh
278  in granulocyte colony-stimulating factor (G-CSF) receptor-triggered granulopoiesis, is downregulated
279                    M-CSF treatment induced M-CSF receptor tyrosine phosphorylation and recruitment of
280 sion of the common beta-chain of the IL-3/GM-CSF receptor was down-regulated in Stat-5-activated myel
281 at the interaction between ICAM-1 and the GM-CSF receptor was essential for GM-CSF-induced eosinophil
282     The extracellular domain of the murine G-CSF receptor was required for the activity of SB 247464,
283 ion, the common beta subunit of IL-3/IL-5/GM-CSF receptor was tyrosine phosphorylated in the clones i
284 l3 cells and FDCP1 cells expressing mutant G-CSF receptors was examined and it was found that G-CSF u
285                    pDC that expressed the GM-CSF receptor were increased in breast tumors compared wi
286 lation of c-Kit and the beta-chain of the GM-CSF receptor were not observed, SCF and GM-CSF in combin
287      Binding studies indicated that human GM-CSF receptors were present on all of the human GI and le
288  instead, mutations of CSF3R, encoding the G-CSF receptor, were common.
289 developed a neutralizing mAb to the murine G-CSF receptor, which potently antagonizes binding of muri
290 expressing a carboxyl-terminally truncated G-CSF receptor, which supports proliferation but not diffe
291 ific macrophage colony-stimulating factor (M-CSF) receptor, which is critical for monocytic cell surv
292 netics, the MPOs were found to bind to the G-CSF receptor with low nanomolar affinities, similar to t

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top