戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 ter of the [FeFe]-hydrogenase (H(2)ase) from Clostridium acetobutylicum.
2 related morphogenesis and solventogenesis in Clostridium acetobutylicum.
3 s is not the same as that in B. subtilis and Clostridium acetobutylicum.
4 n of hydE, hydF, and hydG from the bacterium Clostridium acetobutylicum.
5  transcription of solvent formation genes in Clostridium acetobutylicum.
6 acillus anthracis, Staphylococcus aureus and Clostridium acetobutylicum.
7 lase and butyrate kinase, respectively, from Clostridium acetobutylicum.
8 the cognate operons of Bacillus subtilis and Clostridium acetobutylicum.
9 to play a role in the solventogenic shift of Clostridium acetobutylicum.
10 2) evolution in reaction mixtures containing Clostridium acetobutylicum 2[4Fe-4S]-ferredoxin and [Fe-
11 dentities to ADHE of Escherichia coli (49%), Clostridium acetobutylicum (44%), and E. histolytica (43
12                                The genome of Clostridium acetobutylicum 824 contains two genes encodi
13 re we directly map the metabolic pathways of Clostridium acetobutylicum, a soil bacterium whose major
14              Acetoacetate decarboxylase from Clostridium acetobutylicum (AAD) catalyzes the decarboxy
15 olyketides native to the anaerobic bacterium Clostridium acetobutylicum, an organism well-known for i
16 modulated at the onset of solventogenesis in Clostridium acetobutylicum and C. beijerinckii.
17         Additional copies were identified in Clostridium acetobutylicum and Staphylococcus aureus, in
18 imited similarity to a glucanohydrolase from Clostridium acetobutylicum and SusG had high similarity
19 ptococcus pneumoniae, Staphylococcus aureus, Clostridium acetobutylicum, and Clostridium perfringens.
20 G+C Gram-positive bacteria, in particular to Clostridium acetobutylicum, and mycoplasmas.
21 scherichia coli, the cell adhesion domain of Clostridium acetobutylicum, and the invasin of Yersinia
22 se, and butyryl-CoA dehydrogenase (BCD) from Clostridium acetobutylicum are responsible for the forma
23 der to increase the butanol/acetone ratio of Clostridium acetobutylicum ATCC 824 fermentations.
24  sequence of the solvent-producing bacterium Clostridium acetobutylicum ATCC 824 has been determined
25                                          The Clostridium acetobutylicum ATCC 824 spo0A gene was clone
26 er in wild-type and spo0A-deleted strains of Clostridium acetobutylicum ATCC 824.
27 e present a TU map for the obligate anaerobe Clostridium acetobutylicum ATCC 824.
28 ) genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824.
29 istantly related endospore-forming bacterium Clostridium acetobutylicum, attesting to their importanc
30 ols the initiation of endospore formation in Clostridium acetobutylicum, but genes encoding key phosp
31 ty with GroEL from Escherichia coli (Ec) and Clostridium acetobutylicum (Ca), respectively.
32                                  The enzyme, Clostridium acetobutylicum (CaADH), recently expressed b
33 lytic activity of an [FeFe]-hydrogenase from Clostridium acetobutylicum (CaH2ase) immobilized on sing
34 chemical study of an [FeFe]-hydrogenase from Clostridium acetobutylicum (CaHydA), we now report elect
35 rods (CdS NRs) and [FeFe]-hydrogenase I from Clostridium acetobutylicum (CaI).
36 rogenases (from Chamydomonas reinhardtii and Clostridium acetobutylicum) can be covalently attached t
37 cetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert c
38 ular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) en
39                                          The Clostridium acetobutylicum [FeFe]-hydrogenase HydA has b
40 pped with 3-mercaptopropionic acid (MPA) and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) th
41 complexes of CdTe nanocrystals (nc-CdTe) and Clostridium acetobutylicum [FeFe]-hydrogenase I (H(2)ase
42                Analysis of the Gram-positive Clostridium acetobutylicum genome reveals an inexplicabl
43 rays used to analyze cultured T cells and 22 Clostridium acetobutylicum glass arrays.
44 expressed the [FeFe] hydrogenase, HydA, from Clostridium acetobutylicum in the non-nitrogen-fixing cy
45                                              Clostridium acetobutylicum is a bacterial species that f
46                                CA_C2195 from Clostridium acetobutylicum is a protein of unknown funct
47                                              Clostridium acetobutylicum is both a model organism for
48                                        While Clostridium acetobutylicum Ogg (CacOgg) DNA glycosylase
49 e first characterization of a bacterial Ogg, Clostridium acetobutylicum Ogg (CacOgg).
50 rogenases from Chlamydomonas reinhardtii and Clostridium acetobutylicum, only one of which has a chai
51 o, the fermentative production of acetone by Clostridium acetobutylicum provided a crucial alternativ
52 ogenases, from Chlamydomonas reinhardtii and Clostridium acetobutylicum, react with O2 according to t
53                        Here we show that the Clostridium acetobutylicum sigma(K) acts both early, pri
54 nscriptional program of the solvent-tolerant Clostridium acetobutylicum strain 824(pGROE1) and the pl
55 [AADC] and coenzyme A-transferase [CoAT]) of Clostridium acetobutylicum strain ATCC 824.
56 e large-scale transcriptional program of two Clostridium acetobutylicum strains (SKO1 and M5) relativ
57  the important industrial and model organism Clostridium acetobutylicum, the spoIIE gene was successf
58                                           In Clostridium acetobutylicum, the T-box that regulates the
59  full production of these proteins can allow Clostridium acetobutylicum to survive and even grow in o
60                   DNA microarray analysis of Clostridium acetobutylicum was used to examine the genom
61 n the industrial biofuel-producing bacterium Clostridium acetobutylicum, which previously lacked robu

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。