コーパス検索結果 (left1)
通し番号をクリックするとPubMedの該当ページを表示します
1 EIAV and HIV vectors transduced equivalent numbers of pr
2 EIAV causes a uniquely dynamic disease that is character
3 EIAV encoding enhanced green fluorescent protein (eGFP)
4 EIAV NC mutants lost interactions with Bro1 and failed t
5 EIAV Rev is characterized by a high rate of genetic vari
6 EIAV vectors are able to efficiently transduce rod and c
7 EIAV(17SU), containing only the TM/Rev region from the a
8 EIAV(vMA-1c) superinfection of ED cells results in a bui
9 EIAV-based gene transfer of eGFP is highly efficient and
10 EIAV-derived vectors devoid of S2 are less susceptible t
11 al neutralizing domain variants of groups 1 (EIAV(PND-1)) and 5 (EIAV(PND-5)), respectively; however,
12 studies of equine infectious anemia virus-1 (EIAV) reverse transcriptase (RT) showed two effects of D
15 in variants of groups 1 (EIAV(PND-1)) and 5 (EIAV(PND-5)), respectively; however, the neutralization-
17 PTAP or PPPY dependent; (iii) budding of all EIAV clones is blocked by dominant negative Vps4; and (i
21 nd L domain-defective particles of HIV-1 and EIAV to examine whether the HIV-2 Env EVR function was a
22 ev-response element [RRE]) used by HIV-1 and EIAV with the hepatitis B virus posttranscriptional regu
24 ats (LTRs) and produce viruses (EIAV(19) and EIAV(17), respectively) of dramatically different virule
27 mutation in the virulent proviral clone, and EIAV(PR)DeltaS2 derived from a reference avirulent provi
28 lease is insensitive to TSG101 depletion and EIAV particles do not contain significant levels of TSG1
29 l for sufficient ribosomal frameshifting and EIAV replication, while concomitant alterations in the a
32 y proteasome inhibitors, while EIAV/PTAP and EIAV/PPPY release is strongly disrupted by these compoun
34 omparative study of three related attenuated EIAV proviral vaccine strains: the previously described
36 uggests either that equine cells infected by EIAV in vivo do not express active A3 proteins or that E
37 ic lentivirus and indicate that infection by EIAV may be mediated by a single receptor, in contrast t
38 the mechanism of resistance that is used by EIAV to prevent superinfection and explored the means by
39 We found that the cellular receptor used by EIAV, equine lentivirus receptor 1 (ELR1), remains on th
42 taS2 derived from a virulent proviral clone, EIAV(UK)DeltaS2/DU containing a second gene mutation in
43 virion budding from a replication-competent EIAV variant with its L domain replaced by the HIV PTAP
46 rates of evolution of the previously defined EIAV gp90 variable domains demonstrated distinct differe
48 al vaccine strains: the previously described EIAV(UK)DeltaS2 derived from a virulent proviral clone,
49 production and processing to provirus during EIAV infection, in addition to its previously defined ro
50 on PTAP; (ii) the release of wild-type EIAV (EIAV/WT) is insensitive to TSG-3', whereas this C-termin
53 gion of helix alpha1 constituted an expanded EIAV-CA(N) oligomeric interface and overlapped with the
54 early and late endocytic proteins facilitate EIAV production mediated by either YPDL or PTAP L domain
55 entedly, in the presence of the host factor, EIAV IN almost exclusively catalyzed concerted integrati
58 In addition, the data define a function for EIAV p9 in the infectivity of virus particles, indicatin
60 nants of Gag-Pol frameshifting necessary for EIAV replication, reveal novel aspects relative to frame
62 essed in various equine cells permissive for EIAV replication in vitro, including monocytes and macro
63 ntified and cloned a functional receptor for EIAV, designated equine lentivirus receptor-1 (ELR1), re
64 We found that a low-pH step was required for EIAV infection of tissue culture cell lines as well as p
65 ntry, we examined the entry requirements for EIAV into two different cells: equine dermal (ED) cells
66 g is monoubiquitinated, the requirements for EIAV release are somewhat different from those for retro
67 time, differential levels of restriction for EIAV and human immunodeficiency virus type 1 (HIV-1) rep
68 imal PU.1 site is the most critical site for EIAV LTR activity in the presence of Tat, other elements
70 data indicate that transgene expression from EIAV vectors is limited by the instability of vector-der
71 rovirus glycoGag, the accessory protein from EIAV is an example of a retroviral virulence determinant
81 o identify the endocytic pathway involved in EIAV entry, we examined the entry requirements for EIAV
82 revealed new functional properties of p9 in EIAV replication, not previously elucidated by Gag polyp
89 risingly, eA3F1 and eA3F2 were packaged into EIAV and HIV-1 virions as effectively as hA3G, although
90 blocked by dominant negative Vps4; and (iv) EIAV/WT release is not impaired by proteasome inhibitors
94 subunit specifically inhibited YPDL-mediated EIAV budding; (iii) virion budding from a replication-co
96 relaxation time ratios T1/T2 for a monomeric EIAV-CA in the presence of oligomerization equilibrium.
97 ults show a dominant population of monomeric EIAV MA at a concentration of 63 microM and 20 degrees C
101 ulatory element (PRE) altered HIV-1, but not EIAV, Gag assembly sites and budding efficiency in human
102 s where no detectable superinfection occurs, EIAV(vMA-1c) entry that is low-pH dependent occurs throu
103 ls but only modestly affected the ability of EIAV(vMA-1c) to enter and kill previously infected ED ce
106 CRD1 as essential for functional binding of EIAV gp90 and for virus infection of transduced Cf2Th ce
107 teasome inhibitors to disrupt the budding of EIAV particles bearing each of the three types of L doma
108 101 fragment potently impairs the budding of EIAV when it is rendered PTAP or PPPY dependent; (iii) b
109 so examined the role of NC in the budding of EIAV, a retrovirus relying exclusively on the (L)YPX(n)L
110 better understand the critical components of EIAV vaccine efficacy, we examine here the relationship
114 further define the envelope determinants of EIAV neutralization specificity, we examined the neutral
115 to identifying potential Env determinants of EIAV vaccine efficacy and demonstrating the profound eff
116 animals, while a similar infectious dose of EIAV(17TM) (which derives SU from the avirulent parent)
119 ric clones indicate that both LTR and env of EIAV(17) are required for the development of severe acut
121 ticipates in the initial trimer formation of EIAV MA, but more importantly, the concentration effect
122 then identified the envelope glycoprotein of EIAV as a determinant that also modulates retroviral sus
124 microscopy confirmed that the inhibition of EIAV production correlated temporally over several days
127 omains and suggest that the insensitivity of EIAV to proteasome inhibitors is conferred by the L doma
128 ng utilized, the internalization kinetics of EIAV is rapid with 50% of cell-associated virions intern
130 ) RNA copies/ml) and a similar maturation of EIAV envelope-specific antibody responses as determined
133 yclin T1 supported productive replication of EIAV and produced infectious virions at levels similar t
136 e immunity primarily drives the selection of EIAV SU variants, but also they demonstrate that other s
137 ed the replication properties of a series of EIAV proviral mutants in which the parental YPDL L domai
139 duction, we have examined the specificity of EIAV p9 binding to endocytic factors and the effects on
140 summary, in vitro selection for a strain of EIAV that rapidly killed cells resulted in the generatio
144 ed the entry mechanism of several strains of EIAV and found that both macrophage-tropic and tissue cu
148 growth curves and relative fitness scores of EIAVs of principal neutralizing domain variants of group
150 eptor specific), EIAV-CMV-MYO7A (UshStat) or EIAV-CMV-Null (control) vectors were performed in shaker
151 viral gene expression, suggesting that other EIAV proteins can at least in part mediate late budding
155 rus that spontaneously arose during passage, EIAV(vMA-1c), can circumvent this mechanism in some cell
157 these same interference treatments prevented EIAV(vMA-1c) infection of endothelial cells but only mod
158 ubretinally delivered UshStat, a recombinant EIAV-based lentiviral vector expressing human MYO7A, on
160 ively; however, the neutralization-resistant EIAV(PND-5) variant was less infectious in single-round
161 neutralization phenotypes of the sequential EIAV envelope variants, we determined the sensitivity of
163 V-GFP, EIAV-RK-GFP (photoreceptor specific), EIAV-CMV-MYO7A (UshStat) or EIAV-CMV-Null (control) vect
164 nduced by a homologous Env challenge strain (EIAV(PV)) was recently tested in ponies to determine the
170 e results of these studies demonstrated that EIAV entry into all cell types was substantially inhibit
171 analysis of EIAV assembly demonstrates that EIAV Gag release is blocked by inhibition of the VPS pat
174 l susceptibility to SERINC5, indicating that EIAV has a bimodal ability to counteract the host factor
175 vo do not express active A3 proteins or that EIAV has developed a novel mechanism to avoid inhibition
178 surface-exposed helix of Ub, suggesting that EIAV Gag may have captured a function that allows it to
179 observations reveal for the first time that EIAV p9 is not absolutely required for virus budding in
180 e experiments reveal for the first time that EIAV receptor-mediated entry into target cells is via a
183 logenetic analysis of the same data, and the EIAV rev variants were partitioned into two overlapping
184 ning the functional interactions between the EIAV SU protein (gp90) and its ELR1 receptor, we mapped
185 red a functional late (L) domain, either the EIAV YPDL L-domain or the proline-rich L domains derived
186 emonstrate that NIH 3T3 cells expressing the EIAV receptor ELR1 and equine cyclin T1 supported produc
187 visna virus were able to substitute for the EIAV slippery sequence in supporting EIAV replication.
189 of the functions of the YPDL L domain in the EIAV life cycle can be replaced by replacement of the pa
190 detail the role of the YPDL L domain in the EIAV life cycle, we have examined the replication proper
192 results indicated that the evolution of the EIAV envelope sequences observed during sequential febri
194 1) motif and potential ubiquitination of the EIAV p9 protein, mutations of these lysine residues to m
195 embly, but not infectivity, functions of the EIAV proviral YPDL substitution mutants can be partially
202 vations indicate for the first time that the EIAV Gag p9 protein performs a critical role in viral DN
205 together, these results demonstrate that the EIAV vectors transduced human cells with efficiencies si
206 en together, these data demonstrate that the EIAV YPDL L domain mediates distinct functions in viral
208 -(409-715) was sufficient for binding to the EIAV YPDL motif; (ii) overexpression of AIP1/Alix or AP-
209 cro-millisecond exchange kinetics due to the EIAV-CA(N) domain oligomerization, independent to the fa
210 n of binding and functional assays using the EIAV SU gp90 protein and various chimeric receptor prote
211 oreover, insensitivity was observed when the EIAV Gag protein was expressed in the absence of all the
213 fectious anemia virus reverse transcriptase (EIAV RT), was evaluated by pre-steady-state kinetic tech
214 dence on PTAP; (ii) the release of wild-type EIAV (EIAV/WT) is insensitive to TSG-3', whereas this C-
215 Additionally, interference of wild-type EIAV binding to ELR1 by the addition of either anti-ELR1
216 nfected with EIAV, suggesting that wild-type EIAV interferes with superinfection by masking ELR1.
217 g that the low-pH step required by wild-type EIAV is not required to activate cellular cathepsins.
218 efore, a dopamine replacement strategy using EIAV has been investigated as a treatment in the 6-hydro
219 uine infectious anemia virus (EIAV) vaccine (EIAV(D9)) capable of protecting 100% of horses from dise
220 an experimental attenuated proviral vaccine, EIAV(UK)deltaS2, based on inactivation of the S2 accesso
221 previously defined panel of natural variant EIAV envelope isolates from sequential febrile episodes
223 orses challenged with the reference virulent EIAV(PV) by using a low-dose multiple-exposure protocol
224 ly immunized horses by our standard virulent EIAV(PV) strain by using a low-dose multiple exposure pr
225 virulent, macrophage-tropic strain of virus EIAV(wyo) to identify LTR changes associated with altera
226 pseudotyped equine infectious anaemia virus (EIAV) based vectors encoding a marker gene to the rat st
227 n encoded by equine infectious anemia virus (EIAV) acts by recruiting AIP-1/ALIX and expression of a
228 roteins from equine infectious anemia virus (EIAV) as an example, demonstrates a linear extrapolation
230 el strain of equine infectious anemia virus (EIAV) called vMA-1c that rapidly and specifically killed
231 L domain of equine infectious anemia virus (EIAV) contains a Yxxtheta motif that interacts with AP-2
232 c strains of equine infectious anemia virus (EIAV) contains three PU.1 binding sites, namely an invar
233 19/wenv17 of equine infectious anemia virus (EIAV) differ in env and long terminal repeats (LTRs) and
234 y pathway of equine infectious anemia virus (EIAV) during infection of its natural target, equine mac
235 e lentivirus equine infectious anemia virus (EIAV) encodes the small protein S2, a pathogenic determi
236 patterns of equine infectious anemia virus (EIAV) envelope variation during a 2.5-year period in exp
237 e budding of equine infectious anemia virus (EIAV) from infected equine cells is largely unaffected b
238 eal that the equine infectious anemia virus (EIAV) Gag p9 protein provides a late assembly function m
239 tem based on equine infectious anemia virus (EIAV) gives rise to highly efficient and sustained trans
241 , studies of equine infectious anemia virus (EIAV) have indicated alternative cellular pathways and c
242 vaccines to equine infectious anemia virus (EIAV) have revealed a broad spectrum of efficacy ranging
245 (N-MLV) and equine infectious anemia virus (EIAV) infection, promotion of higher-order association r
249 L domain of equine infectious anemia virus (EIAV) is apparently unique in its reported ability to in
252 us (HIV) and equine infectious anemia virus (EIAV) lentiviral vectors in a variety of human cell type
253 Using the equine infectious anemia virus (EIAV) lentivirus model system, we previously demonstrate
254 myristylated equine infectious anemia virus (EIAV) MA and its interaction with PIP2-C4 primarily usin
255 nfected with equine infectious anemia virus (EIAV) neutralized homologous virus and several envelope
256 We examined equine infectious anemia virus (EIAV) particles and found that approximately 2% of the p
258 e strains of equine infectious anemia virus (EIAV) prevent superinfection of previously infected cell
262 9 protein of equine infectious anemia virus (EIAV) revealed a progressive loss in replication phenoty
263 variants of equine infectious anemia virus (EIAV) that differed in sensitivity to broadly neutralizi
264 Vmac239) and equine infectious anemia virus (EIAV) the most dependent and human immunodeficiency viru
265 e lentivirus equine infectious anemia virus (EIAV) to investigate the cellular restrictions for lenti
266 ruses except equine infectious anemia virus (EIAV) use the small accessory protein Vif to counteract
267 9 protein of equine infectious anemia virus (EIAV) utilizes a unique YPDL motif as a late assembly do
268 e attenuated equine infectious anemia virus (EIAV) vaccine (EIAV(D9)) capable of protecting 100% of h
269 protein from equine infectious anemia virus (EIAV), a lentivirus sharing the same cone-shaped capsid
270 DL) motif in equine infectious anemia virus (EIAV), and a related sequence in HIV-1, bind the endosom
271 (HIV-1) and equine infectious anemia virus (EIAV), and inhibits the accumulation of viral reverse tr
272 vaccine for equine infectious anemia virus (EIAV), based on mutation of the viral S2 accessory gene,
273 ct N-MLV and equine infectious anemia virus (EIAV), but not HIV-1, HIV-2, SIVmac or SIVagm, whilst AG
274 s, including equine infectious anemia virus (EIAV), exclusively infect cells of the monocyte-macropha
275 virus (BIV), equine infectious anemia virus (EIAV), feline immunodeficiency virus (FIV), and Rous sar
276 lentivirus, equine infectious anemia virus (EIAV), occurs in most infected horses and involves MHC c
277 virus (FIV), equine infectious anemia virus (EIAV), or N-tropic murine leukemia virus (MLV) postentry
280 tarGen is an equine infectious anemia virus (EIAV)-based lentiviral vector that expresses the photore
286 eshifting in equine anemia infectious virus (EIAV) by using full-length provirus replication and Gag/
287 e 1 [HIV-1], equine infectious anemia virus [EIAV]) and unrestricted (NB-tropic murine leukemia virus
288 terminal repeats (LTRs) and produce viruses (EIAV(19) and EIAV(17), respectively) of dramatically dif
289 er hand, virion production was enhanced when EIAV-infected cells were incubated briefly (2 h) with th
290 First, virion production was reduced when EIAV-infected cells were treated with phallacidin, a cel
292 To define further the mechanisms by which EIAV adapts vesicle trafficking machinery to facilitate
294 not impaired by proteasome inhibitors, while EIAV/PTAP and EIAV/PPPY release is strongly disrupted by
295 s to define viral parameters associated with EIAV-induced cell killing and begin to explore the mecha
296 t prior infection of equine fibroblasts with EIAV did not alter the ability of vMA-1c to infect and k
297 studies demonstrated that immunization with EIAV(UK)deltaS2 elicited mature virus-specific immune re
298 e surface of cells chronically infected with EIAV, suggesting that wild-type EIAV interferes with sup
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。