コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 inked peptides derived from the interface of HIV protease.
2 ew inhibitors predicted to be active against HIV protease.
3 independent from its ability to inhibit the HIV protease.
4 olymers substitute for salts as effectors of HIV protease.
5 se, inosine monophosphate dehydrogenase, and HIV protease.
6 egy to kill HIV-infected cells by exploiting HIV protease.
7 ffinity of fullerene-based inhibitors of the HIV protease.
8 a small molecule template for inhibition of HIV protease.
9 offset the inhibitor resistance acquired by HIV protease.
10 r targets of antimicrobial drugs such as the HIV protease.
11 ch to build potent active site inhibitors of HIV protease.
12 predicting the cleavage sites in proteins by HIV protease.
13 t potent integrase inhibitors also inhibited HIV protease.
14 d, have proven to be effective inhibitors of HIV protease.
15 eir activity, such as the proteasome and the HIV protease.
16 roduced from p66 by C-terminal truncation by HIV protease.
17 d Arg-8 side chain in the S1'-subsite of the HIV protease.
18 o analyze the association of amprenavir with HIV protease.
19 eveloped to combat the resistant variants of HIV protease.
20 hods were used to study the role of Thr80 in HIV protease.
21 activity as a function of the inhibition of HIV-protease.
22 loop in conferring inhibitor specificity in HIV proteases.
23 developed for human immunodeficiency viral (HIV) protease.
24 rocaspase 8 by human immunodeficiency virus (HIV) protease.
25 to predict the cleavability of a peptide by HIV protease?
27 ing of the hypothetical derivatives into the HIV protease active site and assessment of the model com
28 tion) revealed extensive interactions in the HIV protease active site including strong hydrogen bondi
29 ization of hydrophobic interactions with the HIV protease active site produced ritonavir, with excell
33 volves a fluorogenic continuous assay of the HIV protease, analyzed by the differential-equation orie
34 et provides a nearly complete mutagenesis of HIV protease and enables the calculation of statisticall
35 h NSC 158393 derivatives that inhibited both HIV protease and integrase, and the most potent integras
38 provides detailed selection pressure maps of HIV protease and reverse transcriptase, both of which ar
39 o discovered 163 new amino acid mutations in HIV protease and RT that are strong candidates for drug
41 alues (antiviral resistance) for each of the HIV proteases and the viruses containing the identical e
42 ted protease inhibitors, including aspartic (HIV protease) and metallo (ACE and thermolysin) protease
43 e study displayed decent binding affinity to HIV protease, and several compounds were shown to posses
44 tive importance and roles of each subsite in HIV protease, and the constraints on robust inhibitor de
45 f actin filaments, toward the functioning of HIV protease, and toward the process of angiogenesis.
46 vity in cell culture, were selective for the HIV protease, and were orally available in three animal
47 tion of HIV-1 reverse transcriptase (RT) and HIV protease are effective mechanisms for anti-retrovira
48 analysis is that inhibitor-resistant mutant HIV proteases are very unlikely to contribute to viral v
49 A series of novel aminodiol inhibitors of HIV protease based on the lead compound 1 with structura
51 , however, produces compounds with excellent HIV protease binding affinity and antiviral activity.
52 ing the structure of compound 3 bound to the HIV protease, bis tertiary amide inhibitor 9 was designe
53 ery similar to human immunodeficiency virus (HIV) protease but exhibits distinct substrate and inhibi
54 on-derived S(rel)(2) values in ubiquitin and HIV protease, but also identify a fraction of residues f
57 called a sum-product function for extracting HIV protease cleavage discriminant rules using genetic p
63 y viral proteins, including the finding that HIV protease cleaves eIF3d, a subunit of eukaryotic tran
65 hange when the human immunodeficiency virus (HIV) protease cleaves it free from the Pr55(Gag) polypro
66 ave shown that human immunodeficiency virus (HIV) protease cleaves procaspase 8 to a fragment, termed
68 stal structure of the 4-hydroxy-2-pyrone III/HIV protease complex, a series of analogues incorporatin
69 ing the crystal structures of three chimeric HIV proteases complexed with SB203386, a tripeptide anal
71 the threat of human immunodeficiency virus (HIV) protease drug resistance still exists, there will b
74 s can result in high-affinity ligands of the HIV protease, for which they are highly complementary in
75 sures on the same amino acid sequence of the HIV protease gene and, thus, can influence viral sequenc
77 ugh characterizing location contributions to HIV protease gene region differences associated with a p
78 olution of the human immunodeficiency virus (HIV) protease gene (pro), we analyzed a database of 213
79 ostintegration HIV replication can result in HIV protease generation of Casp8p41, which activates BAK
80 was constructed to improve the separation of HIV protease genes varying in sequence at 12 codons asso
81 ile the role of drug resistance mutations in HIV protease has been studied comprehensively, mutations
82 specificity in human immunodeficiency virus (HIV) protease has been investigated by determining the c
87 on of the design of the cyclic urea class of HIV protease (HIVPR) inhibitors suggests a general appro
88 uses small inhibitory molecules that target HIV protease; however, the emergence of resistant HIV st
89 e properties first ascribed to inhibition of HIV protease; however, they have pleiotropic antitumour
90 e energy contribution of each residue in the HIV protease in binding to one of its substrates and to
92 catalytic efficiency of mutant and wild type HIV protease in the presence or absence of inhibitors.
94 of the human immunodeficiency virus type 1 (HIV) protease in cultured cells leads to apoptosis, prec
97 sed in vitro and in vivo models to show that HIV protease inhibitor (PI) class ARVs induced neuronal
99 an allophenylnorstatine-containing dipeptide HIV protease inhibitor (PI), which is potent against a w
100 fragment to fill S1' and S2' afforded potent HIV protease inhibitor 49 [IC50 = 10 nM, 3-[(2-tert-buty
101 are amino alcohol 1, the core portion of the HIV protease inhibitor A-792611, in 46% yield from pheny
103 ed that peptidomimetic FISLE-412,1 a reduced HIV protease inhibitor analogue, was well-tolerated, alt
105 or the progeria-like side effects of certain HIV protease inhibitor drugs, but also highlight new app
108 or inhibition of glucose transport with the HIV protease inhibitor ritonavir elicited growth arrest
109 lines and primary cells by the FDA-approved HIV protease inhibitor ritonavir, which exerts a selecti
113 uct FK506, we have synthetically modified an HIV protease inhibitor such that it acquires high affini
114 We examined the effect of nelfinavir, an HIV protease inhibitor that inhibits Akt signaling, on V
115 hat it is an important regulator involved in HIV protease inhibitor toxicity and host-microbial patho
117 d UIC-94017 (TMC-114) is a second-generation HIV protease inhibitor with improved pharmacokinetics th
118 with three probes (a thrombin inhibitor, an HIV protease inhibitor, and a model for angiotensin II).
122 The molecular mechanisms of action of a HIV protease inhibitor, ritonavir, on hepatic function w
123 a Merck compound synthesized as a potential HIV protease inhibitor, was investigated using recombina
125 type 2 diabetes mellitus, and nelfinavir, an HIV protease inhibitor, when used alone or in combinatio
127 er, the cellular/molecular mechanisms of the HIV protease inhibitor-induced lipid dysregulation and a
128 s a once-daily human immunodeficiency virus (HIV) protease inhibitor (PI) shown to be effective and w
129 a nonpeptidic human immunodeficiency virus (HIV) protease inhibitor (PI), containing 3(R),3a(S),6a(R
131 Ritonavir is a human immunodeficiency virus (HIV) protease inhibitor and an inhibitor of cytochrome P
132 poorly soluble human immunodeficiency virus (HIV) protease inhibitor based upon in vivo test results.
133 trate that the human immunodeficiency virus (HIV) protease inhibitor ritonavir binds SXR and activate
134 anism by which human immunodeficiency virus (HIV) protease inhibitor therapy adversely induces lipody
135 mprenavir is a human immunodeficiency virus (HIV) protease inhibitor with a favorable pharmacokinetic
136 f lopinavir, a human immunodeficiency virus (HIV) protease inhibitor, coformulated with ritonavir as
137 we tested the hypothesis that indinavir, an HIV-protease inhibitor, directly induces insulin resista
138 ed the safety and efficacy of saquinavir, an HIV-protease inhibitor, given with one or two nucleoside
139 cess an important synthetic precursor to the HIV-protease inhibitor, saquinavir, by formation of an N
141 inhibitors, utilizing crystal structures of HIV protease/inhibitor complexes, provided a rational ba
145 Inhibitors of the HIV aspartyl protease [HIV protease inhibitors (HIV-PIs)] are the cornerstone o
147 and diabetes are recognized side effects of HIV protease inhibitors (HPIs), suggesting that these ag
154 , and oral administration of prodrugs of the HIV protease inhibitors (PIs) lopinavir and ritonavir.
157 tiretroviral therapy (HAART), which includes HIV protease inhibitors (PIs), has been associated with
158 drug classes such as nucleoside analogs and HIV protease inhibitors (PIs), has increased HIV-patient
160 s study, we demonstrate that three different HIV protease inhibitors (ritonavir, indinavir, and ataza
161 daily 10 mg/kg intraperitoneal injection of HIV protease inhibitors (ritonavir, lopinavir/ritonavir
164 iseases like atherosclerosis it appears that HIV protease inhibitors affect the cardiovascular system
165 We also resolved binding of zinc, lipids and HIV protease inhibitors and showed that drug binding blo
166 poor pharmacokinetic properties of existing HIV protease inhibitors and, potentially, other drug cla
174 or the discovery of more potent non-peptidic HIV protease inhibitors as potential therapeutic agents
175 s an illustration, the core structure of the HIV protease inhibitors DMP 323 and DMP 450 has been pre
176 ination antiretroviral therapy that includes HIV protease inhibitors experience atrophy of peripheral
177 d rapid biliary excretion of peptide-derived HIV protease inhibitors have limited their utility as po
179 cal approaches used to determine the role of HIV protease inhibitors in the development of cardiovasc
180 trials have established the critical role of HIV protease inhibitors in the treatment of acquired imm
181 block for several clinical and experimental HIV protease inhibitors including the highly important d
182 sity lipoprotein receptor (LDL-R) null mice, HIV protease inhibitors induce atherosclerotic lesions a
184 Treatment of patients infected with HIV with HIV protease inhibitors is unfortunately associated with
185 In vitro and in vivo data suggest that the HIV protease inhibitors lopinavir/ritonavir may have pot
189 rrently available data strongly suggest that HIV protease inhibitors negatively impact the cardiovasc
191 on mass spectrometry to study the effects of HIV protease inhibitors on the human zinc metalloproteas
192 d screening program to discover non-peptidic HIV protease inhibitors previously identified compound I
193 rovide possible cellular mechanisms by which HIV protease inhibitors promote atherosclerosis and card
195 lues for inhibition of HIV-1 protease by the HIV protease inhibitors ranged from 0.24 nM to 1.0 micro
196 esistant HIV strains, the development of new HIV protease inhibitors remains a high priority for the
200 , in the presence of dilated cardiomyopathy, HIV protease inhibitors that impair glucose transport in
205 rapeutic concentrations (5-15 microM), these HIV protease inhibitors were found to increase the level
206 d from S-aryl-D-cysteine proved to be potent HIV protease inhibitors which also exhibited potent whol
207 ided an example of a promising new series of HIV protease inhibitors with significantly improved enzy
208 an immunodeficiency virus (HIV) treated with HIV protease inhibitors, a complication develops that re
209 . 2c) were identified as potent, nonpeptidic HIV protease inhibitors, but these compounds lacked sign
210 ding lupus medications, thrombin inhibitors, HIV protease inhibitors, DNA gyrase inhibitors and many
211 ause for the loss of sensitivity toward many HIV protease inhibitors, including our first-generation
212 chemotherapeutic agents, antipsychotics, and HIV protease inhibitors, into and out of the central ner
213 anti-retroviral therapies, which incorporate HIV protease inhibitors, resolve many AIDS-defining illn
214 chiral building blocks for the synthesis of HIV protease inhibitors, such as atazanavir and darunavi
215 e (HAPA) transition-state isostere series of HIV protease inhibitors, which initially resulted in the
216 template provided a series of highly potent HIV protease inhibitors, with structure-activity relatio
233 onstrated that human immunodeficiency virus (HIV) protease inhibitors (PIs) exert inhibitory effects
236 efficacy of 5 human immunodeficiency virus (HIV) protease inhibitors (PIs) was examined by the effec
237 (RTV)-boosted human immunodeficiency virus (HIV) protease inhibitors are coadministered in healthy v
239 fectiveness of human immunodeficiency virus (HIV) protease inhibitors in acquired immunodeficiency sy
240 of non-peptide human immunodeficiency virus (HIV) protease inhibitors in short analysis time and auto
243 patients with human immunodeficiency virus (HIV) protease inhibitors such as ritonavir can result in
244 ivity of three human immunodeficiency virus (HIV) protease inhibitors was investigated in human prima
245 e made the intriguing discovery that several HIV-protease inhibitors can function as decoy antigens t
247 le resistance at entry became susceptible to HIV-protease inhibitors within 16 weeks after the discon
250 en the geometric mean efficiency of a mutant HIV protease is less than 61% of the wild type activity
252 IV-1 protease bound to SB203386 reveals that HIV protease ligand specificity is imparted by residues
253 tural basis of human immunodeficiency virus (HIV) protease ligand specificity, we have crystallized a
254 f CD4 T cells that replicate HIV can involve HIV protease-mediated cleavage of procaspase 8 to genera
255 to a series of diastereomeric inhibitors of HIV protease, monofluorinated analogues of the Merck HIV
257 he ability to predict the drug resistance of HIV protease mutants may be useful in developing more ef
258 ide a rational context for understanding why HIV protease mutations that arise in drug resistant stra
259 were also found to decrease the activity of HIV protease near neutral pH values, while incorporating
260 The peptides selected were substrates of HIV protease or of avian sarcoma virus protease, both of
263 Cleavage of the doubly labeled substrate by HIV protease precludes complex formation, thereby decrea
264 polyprotein by human immunodeficiency virus (HIV) protease present the virus with severe limitations
265 The overall catalytic efficiency of a mutant HIV protease relative to the wild type enzyme is given b
266 sp3 becomes processed into an active form by HIV protease, resulting in apoptosis of the infected cel
267 cessful molecular modeling of inhibitors for HIV protease suggests that this may be an attainable obj
268 s indicate that pepsin is a better model for HIV protease than for avian leukemia virus protease.
269 tent peptide (G12: GIXVSL; X=pBzF) inhibited HIV protease through the formation of a covalent Schiff
270 the reduction in binding affinity to the MDR HIV protease, TMC114 still binds with an affinity that i
272 subsequently used to evolve an inhibitor of HIV protease using a selection based on cellular viabili
273 ree energies between different dimers of the HIV protease using molecular dynamics and a continuum mo
274 ran-2-one) was modeled in the active site of HIV protease utilizing a similar binding mode found for
277 ed as any active site or primary mutation in HIV protease, was detected in virus isolates from 51 lop
278 hydro-4-hydroxy-2-pyrones complexed with the HIV protease were also determined to provide better unde
279 and glycine conformations is exemplified by HIV protease, where different inhibitors are associated
280 eine sulfone, 17c, was a 3.5 nM inhibitor of HIV protease which inhibited the spread of virus in MT4
281 ic resistance required multiple mutations in HIV protease, which emerged subsequently in an ordered,
282 region of the human immunodeficiency virus (HIV) protease, which houses the active site of the enzym
283 ce in searching for the proper inhibitors of HIV protease will be greatly expedited if one can find a
284 owledge of the polyprotein cleavage sites by HIV protease will refine our understanding of its specif
285 es culminated in compound VI, which inhibits HIV protease with a Ki value of 8 pM and shows an IC90 v
286 s have been shown to be potent inhibitors of HIV protease with Ki < 0.050 nM and IC90 < 20 nM for vir
287 pic changes in human immunodeficiency virus (HIV) protease with reduced in vitro susceptibility to th
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。