戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1  intracytoplasmic membrane heme transport in Haemophilus.
2 the highest levels of Streptococcus (18.4%), Haemophilus (12.7%) and Neisseria (6.8%).
3 etry (MALDI-TOF MS) in the identification of Haemophilus, Aggregatibacter, Cardiobacterium, Eikenella
4 espiratory pathogens belonging to the genera Haemophilus and Pseudomonas, colonized the early biofilm
5 pathogens, including Pseudomonas aeruginosa, Haemophilus, Aspergillus fumigatus, and nontuberculous m
6 creased abundance of Psuedomonas, Mycoplana, Haemophilus, Blautia, and Dorea genera in MS patients, w
7                             Subsequently, 44 Haemophilus clinical isolates were collected, and 36 iso
8 to the role of P4 as an important factor for Haemophilus colonization and subsequent respiratory trac
9 ficantly higher relative abundances, whereas Haemophilus, Corynebacterium, Cellulosimicrobium and Cam
10                                          The Haemophilus cryptic genospecies (HCG) causes genital tra
11    Among infants with lower CCL5 levels, the Haemophilus-dominant microbiota profile was associated w
12                                              Haemophilus ducreyi (HD) and Treponema pallidum subspeci
13 s of CDTs from Escherichia coli (Ec-CDT) and Haemophilus ducreyi (Hd-CDT), which share limited amino
14                                              Haemophilus ducreyi 35000HP contains a homolog of the Cp
15                                          The Haemophilus ducreyi 35000HP genome encodes a homolog of
16                                              Haemophilus ducreyi causes chancroid, a genital ulcer di
17                                              Haemophilus ducreyi causes chancroid, a genital ulcer di
18                             The finding that Haemophilus ducreyi causes lesions similar to yaws is pa
19                                              Haemophilus ducreyi causes the sexually transmitted dise
20                                              Haemophilus ducreyi causes the sexually transmitted dise
21                                              Haemophilus ducreyi encounters several classes of antimi
22 t (p)ppGpp was required for the virulence of Haemophilus ducreyi in humans.
23 y the role of macrophage polarization during Haemophilus ducreyi infection, we analyzed a panel of ma
24                                              Haemophilus ducreyi resists killing by antimicrobial pep
25                Here, we investigated whether Haemophilus ducreyi, a Gram-negative bacterium that caus
26                                              Haemophilus ducreyi, the causative agent of chancroid, h
27                                              Haemophilus ducreyi, the causative agent of chancroid, h
28                                              Haemophilus ducreyi, the etiologic agent of chancroid, e
29                                              Haemophilus ducreyi, the etiologic agent of chancroid, e
30                                              Haemophilus ducreyi, the etiologic agent of chancroid, h
31                    In humans inoculated with Haemophilus ducreyi, there are host effects on the possi
32 cause skin infections in the Pacific islands-Haemophilus ducreyi-as causes of skin ulceration in a ya
33 ecies of bacteria: Neisseria gonorrhoeae and Haemophilus ducreyi.
34 r no changes in the prevalence of Neisseria, Haemophilus, Gemella, Leptotrichia, Solobacterium, Parvi
35                                              Haemophilus haemolyticus and nontypeable Haemophilus inf
36                                              Haemophilus haemolyticus has been recently discovered to
37 nontypeable (NT) Haemophilus influenzae from Haemophilus haemolyticus in respiratory-tract samples, b
38                     We report seven cases of Haemophilus haemolyticus invasive disease detected in th
39 e also investigated their prevalences in 148 Haemophilus haemolyticus strains, a closely related spec
40 d three pathogenic, of the emerging pathogen Haemophilus haemolyticus.
41                                Chlamydia and Haemophilus infections increase NLRP3, caspase-1, IL-1be
42 ekly challenged with a lysate of nontypeable Haemophilus influenza (NTHi), which induces COPD-type in
43  (1% rabies-vaccine recipients), one case of Haemophilus influenza meningitis (1% rabies-vaccine reci
44 s, Rubella, Mumps, trivalent MMR vaccine and Haemophilus influenza type B (HiB) vaccine.
45 rway inflammation in response to nontypeable Haemophilus influenza, which was associated with elevate
46 n is performed using the bacterial strain of Haemophilus influenza.
47 representing a reduced relative abundance of Haemophilus influenzae (35.3% [5.5-91.6] vs 6.7% [0.8-74
48                                              Haemophilus influenzae (Hi) causes respiratory tract inf
49 y to inhibit catalytic activity of DapE from Haemophilus influenzae (HiDapE) and ArgE from Escherichi
50                                              Haemophilus influenzae (MIC(50), </= 0.008 microg/mL; MI
51  pathogens were detected frequently, notably Haemophilus influenzae (mostly nontypeable) together wit
52 re Pseudomonas aeruginosa (n = 10 patients), Haemophilus influenzae (n = 12), Prevotella (n = 18), an
53         It is closely related to nontypeable Haemophilus influenzae (NT H. influenzae).
54 ta-lactamase-producing strain of nontypeable Haemophilus influenzae (NTHi 86-028NP) and an isogenic m
55             The mucosal pathogen nontypeable Haemophilus influenzae (NTHi) adheres to the respiratory
56        Hia is a major adhesin of nontypeable Haemophilus influenzae (NTHi) and has long been investig
57               Biofilms formed by nontypeable Haemophilus influenzae (NTHI) are central to the chronic
58     Haemophilus haemolyticus and nontypeable Haemophilus influenzae (NTHi) are closely related upper
59  by Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) are frequently implicated
60                                  Nontypeable Haemophilus influenzae (NTHI) are Gram-negative bacteria
61 istic human respiratory pathogen nontypeable Haemophilus influenzae (NTHI) are required for type IV p
62 ocator function is necessary for nontypeable Haemophilus influenzae (NTHI) behaviors that mediate dis
63 ram-negative commensal bacterium nontypeable Haemophilus influenzae (NTHI) can cause respiratory trac
64                                  Nontypeable Haemophilus influenzae (NTHi) exclusively infects humans
65                                  Nontypeable Haemophilus influenzae (NTHI) forms biofilms in the midd
66                                  Nontypeable Haemophilus influenzae (NTHi) frequently causes noninvas
67                       Studies of nontypeable Haemophilus influenzae (NTHi) have demonstrated that a n
68 reptococcus pneumoniae (Spn) and nontypeable Haemophilus influenzae (NTHi) in stringently defined oti
69 xed Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) infections (M-OM) and thos
70                                  Nontypeable Haemophilus influenzae (NTHi) initiates infection by col
71                                  Nontypeable Haemophilus influenzae (NTHi) is a bacterium that reside
72                                  Nontypeable Haemophilus influenzae (NTHI) is a commensal inhabitant
73                                  Nontypeable Haemophilus influenzae (NTHi) is a commensal microorgani
74                                  Nontypeable Haemophilus influenzae (NTHI) is a common commensal and
75                                  Nontypeable Haemophilus influenzae (NTHI) is a Gram-negative bacteri
76                                  Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative, opport
77                                  Nontypeable Haemophilus influenzae (NTHI) is a leading cause of oppo
78                                  Nontypeable Haemophilus influenzae (NTHI) is a leading cause of otit
79                                  Nontypeable Haemophilus influenzae (NTHi) is a major bacterial patho
80                                 Non-typeable Haemophilus influenzae (NTHi) is a major cause of mucosa
81                                  Nontypeable Haemophilus influenzae (NTHI) is a respiratory commensal
82                                  Nontypeable Haemophilus influenzae (NTHi) is an important bacterial
83 am-negative pathogenic bacterium nontypeable Haemophilus influenzae (NTHi) is surface exposed and a l
84                                  Nontypeable Haemophilus influenzae (NTHI) is the causative agent of
85                                  Nontypeable Haemophilus influenzae (NTHi) is the dominant bacterium
86                                  Nontypeable Haemophilus influenzae (NTHi) is the leading bacterial p
87  vaccine against nonencapsulated isolates of Haemophilus influenzae (NTHi) lies in the genetic divers
88 ere we examine the impact of the nontypeable Haemophilus influenzae (NTHI) ModA2 phasevarion on patho
89                                  Nontypeable Haemophilus influenzae (NTHi) persists in the airways in
90                                  Nontypeable Haemophilus influenzae (NTHi) was selected as a model pa
91                                  Nontypeable Haemophilus influenzae (NTHI), an opportunistic pathogen
92                                  Nontypeable Haemophilus influenzae (NTHI), an opportunistic pathogen
93 were calculated for pneumococcal, nontypable Haemophilus influenzae (NTHi), Moraxella catarrhalis, St
94 l collapse of biofilms formed by nontypeable Haemophilus influenzae (NTHI), those directed against a
95 ctions with pathogens, including nontypeable Haemophilus influenzae (NTHI), yet the reasons for this
96 asion by lung microbiota such as nontypeable Haemophilus influenzae (NTHi).
97 l impairment of phagocytosis for nontypeable Haemophilus influenzae (NTHI).
98 ce exposed to cigarette smoke or nontypeable Haemophilus influenzae (NTHi).
99 E) responses of ccl3(-/-)mice to nontypeable Haemophilus influenzae (NTHi).
100 by respiratory pathogens such as nontypeable Haemophilus influenzae (NTHi).
101 onization strategies employed by nontypeable Haemophilus influenzae (NTHi).
102 evelopment and colonization with nontypeable Haemophilus influenzae (NTHi).
103  diseases are commonly caused by nontypeable Haemophilus influenzae (NTHi).
104 tly colonized with bacteria [eg, nontypeable Haemophilus influenzae (NTHi)] that cause pulmonary infl
105 onfidence interval [CI], 1.90 and 10.19) and Haemophilus influenzae (OR, 2.04; 95% CI, 1.38 and 3.02)
106  (p = 0.001), NFkB activation by nontypeable Haemophilus influenzae (p = 0.001), TLR4 (p = 0.008) and
107 nces, most notably in potentially pathogenic Haemophilus influenzae (P = 2.7 x 10(-20)), from a preex
108  pathogens were Streptococcus pneumoniae and Haemophilus influenzae (type B and non-type B).
109 s simplex virus [n = 5], adenovirus [n = 5], Haemophilus influenzae [n = 5], and Streptococcus pneumo
110                                              Haemophilus influenzae also uses an enzyme, GlpQ, to hyd
111 colonization by Streptococcus pneumoniae and Haemophilus influenzae among children has been noted in
112  Neisseria meningitidis and ceftriaxone, and Haemophilus influenzae and ceftriaxone.
113  sensitivity and specificity for identifying Haemophilus influenzae and differentiating it from H. ha
114 activity has been achieved against wild-type Haemophilus influenzae and efflux-deficient mutants of E
115 ator to the respiratory pathogen nontypeable Haemophilus influenzae and identify the Haemophilus surf
116 s pneumoniae and the Gram-negative pathogens Haemophilus influenzae and Moraxella catarrhalis .
117 nization with Gram-negative bacteria such as Haemophilus influenzae and Moraxella catarrhalis was fou
118 animal models of the Gram-negative pathogens Haemophilus influenzae and Neisseria meningitidis We hyp
119  vaccination with conjugate vaccines against Haemophilus influenzae and Streptococcus pneumoniae has
120                                              Haemophilus influenzae and Streptococcus pneumoniae were
121 piratory syncytial virus; RSV) and bacteria (Haemophilus influenzae and Streptococcus pneumoniae) in
122 ion of EVI1 itself is induced by nontypeable Haemophilus influenzae and TNF-alpha in an NF-kappaB-dep
123                In the Gram-negative bacteria Haemophilus influenzae and Vibrio cholerae, the master r
124            Immunoglobulin (Ig)A proteases of Haemophilus influenzae are highly specific endopeptidase
125 ococcus aureus, Streptococcus pneumoniae and Haemophilus influenzae are the major causes of conjuncti
126                     Here, using non-typeable Haemophilus influenzae as a model organism, we report th
127 5922 (0.008 to 0.03 mug/ml and 30 to 36 mm), Haemophilus influenzae ATCC 49247 (0.002 to 0.015 mug/ml
128  pneumoniae ATCC 49619 (disk and broth), and Haemophilus influenzae ATCC 49247 (disk and broth).
129 ureus ATCC 29213 (MIC range, 1 to 4 mug/ml), Haemophilus influenzae ATCC 49247 (MIC and disk diffusio
130 and ATCC 25923, Escherichia coli ATCC 25922, Haemophilus influenzae ATCC 49247, and Streptococcus pne
131 23, Streptococcus pneumoniae ATCC 49619, and Haemophilus influenzae ATCC 4927 strains were evaluated.
132 in Southern England immunized with DTaP5/IPV/Haemophilus influenzae b (Hib-TT) vaccine at 2-3-4 month
133  syncytial virus, parainfluenza viruses, and Haemophilus influenzae being the most common.
134         We present the Arg160His mutation of Haemophilus influenzae carbonic anhydrase (HICA), which
135 ve a significantly lower risk of nontypeable Haemophilus influenzae carriage in particular (relative
136             Pneumococcus, meningococcus, and Haemophilus influenzae cause a similar spectrum of infec
137 ella kingae (HACEK) clinical isolates and 20 Haemophilus influenzae clinical isolates.
138                                 Non-typeable Haemophilus influenzae contains an N(6)-adenine DNA-meth
139                                        Using Haemophilus influenzae Eagan strains expressing well-cha
140 son of derivatives of a laboratory strain of Haemophilus influenzae expressing either surface-associa
141                               Unencapsulated Haemophilus influenzae frequently causes noninvasive upp
142  marker for differentiating nontypeable (NT) Haemophilus influenzae from Haemophilus haemolyticus in
143 terial burden and a significant outgrowth of Haemophilus influenzae from the existing microbiota of s
144                                          The Haemophilus influenzae HMW1 adhesin is an N-linked glyco
145 ficiency further affected internalization of Haemophilus influenzae in bronchial epithelial cells.
146 d for TolR is of the periplasmic domain from Haemophilus influenzae in which N- and C-terminal residu
147     In this study, we found that nontypeable Haemophilus influenzae induces the association of Itch w
148 he survival rate after a lethal non-typeable Haemophilus influenzae infection in wild-type mice, but
149 tudy persistent Streptococcus pneumoniae and Haemophilus influenzae infections, to show that structur
150                                              Haemophilus influenzae is a Gram-negative human pathogen
151                                  Nontypeable Haemophilus influenzae is a major cause of localized res
152                                              Haemophilus influenzae is a rare cause of soft tissue in
153                                              Haemophilus influenzae is a significant causative agent
154                                 Non-typeable Haemophilus influenzae is an opportunistic pathogen of t
155 lmonary inflammation induced by non-typeable Haemophilus influenzae is significantly attenuated in IR
156 configurations were predicted in nontypeable Haemophilus influenzae isolates based on the presence of
157 e operon was significantly more prevalent in Haemophilus influenzae isolates causing otitis media and
158 -resolution X-ray structure determination of Haemophilus influenzae KDO8PP bound to KDO/VO3(-) and Ba
159 d antimicrobial activity against a strain of Haemophilus influenzae lacking its major efflux pump.
160  we have shown that the C-terminal domain of Haemophilus influenzae LpoA (HiLpoA) has a highly conser
161 , and detailed enzymatic characterization of Haemophilus influenzae LpxH (HiLpxH).
162 ed as having meningococcal, pneumococcal, or Haemophilus influenzae meningitis in the period 1977-200
163 or upon acute exposure to either nontypeable Haemophilus influenzae or ovalbumin.
164 ts of the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D-conjugate vaccine (PHiD
165                                              Haemophilus influenzae protein F (PF) is an important vi
166 m phylogenetically distant Aquifex aeolicus, Haemophilus influenzae Rd, and Synechocystis sp. were fo
167 lls) to the respiratory pathogen nontypeable Haemophilus influenzae resulted in a marked increase in
168 us, while challenge of Trim29(-/-) mice with Haemophilus influenzae resulted in lethal lung inflammat
169                      The introduction of the Haemophilus influenzae serotype b (Hib) conjugate vaccin
170 tis in a healthy adult patient, secondary to Haemophilus influenzae serotype f infection, and we revi
171                                              Haemophilus influenzae strains are classified as typeabl
172 e show that glucocorticoids and non-typeable Haemophilus influenzae synergistically upregulate IRAK-M
173 abs positive for Streptococcus pneumoniae or Haemophilus influenzae than were males (OR 9.09; 95% CI
174                 Signaling mechanisms used by Haemophilus influenzae to adapt to conditions it encount
175             Upon exposure of serum-sensitive Haemophilus influenzae to human serum, Ecb protected the
176  of a collection of compound fragments using Haemophilus influenzae TrmD identified inhibitory, fused
177 n the first detection of 2 cases of invasive Haemophilus influenzae type a (Hia) disease in Italy.
178 t diphtheria, tetanus, pertussis, polio, and Haemophilus influenzae type b (DTaP-IPV-Hib) administere
179 s-acellular pertussis-inactivated poliovirus-Haemophilus influenzae type b (DTaP-IPV-Hib) vaccine sin
180               A conjugate vaccine containing Haemophilus influenzae type b (Hib) and group C meningoc
181 treptococcus pneumoniae (S. pneumoniae), and Haemophilus influenzae type b (Hib) are three most commo
182 ed (DTaP), inactivated poliovirus (IPV), and Haemophilus influenzae type b (Hib) conjugate vaccine (D
183 e United States in the early 1990s, when the Haemophilus influenzae type b (Hib) conjugate vaccine fo
184                                              Haemophilus influenzae type b (Hib) conjugate vaccine, d
185                        The widespread use of Haemophilus influenzae type b (Hib) conjugate vaccines h
186                    The incidence of invasive Haemophilus influenzae type b (Hib) disease has signific
187 ng hospital in Malawi during introduction of Haemophilus influenzae type b (Hib) vaccination and the
188 rst country in Africa to introduce conjugate Haemophilus influenzae type b (Hib) vaccine, which, as i
189  Streptococcus pneumoniae polysaccharide and Haemophilus influenzae type b (Hib) vaccines in ITP pati
190                           Protection against Haemophilus influenzae type b (Hib), a rapidly invading
191 ribitol (PRP) polysaccharides extracted from Haemophilus influenzae type b (Hib), and the correspondi
192 duction of vaccines against pneumococcus and Haemophilus influenzae type b (the most important causes
193  become the predominant invasive pathogen as Haemophilus influenzae type b and pneumococcal vaccine u
194 ca, the widespread use of vaccines targeting Haemophilus influenzae type b and Streptococcus pneumoni
195 and of occult bacteremia since the advent of Haemophilus influenzae type b and Streptococcus pneumoni
196 -tetanus-acellular pertussis-inactived polio-Haemophilus influenzae type b combined vaccine (DTaP-IPV
197  C, W, Y polysaccharide vaccine (PsACWY); or Haemophilus influenzae type b conjugate vaccine (Hib-TT)
198        Literature on hepatitis B, rotavirus, Haemophilus influenzae type b conjugate, and pneumococca
199 clinical significance and characteristics of Haemophilus influenzae type b genogroup strains isolated
200 a, tetanus, pertussis, measles, rubella, and Haemophilus influenzae type b vaccine antigens were comp
201 s-acellular pertussis-inactivated poliovirus/Haemophilus influenzae type b vaccine; age 6/10/ 14 week
202 r pertussis, inactivated polio, hepatitis B, Haemophilus influenzae type b vaccines); (2) 4CMenB at 2
203 ng countries in 2015, using pneumococcal and Haemophilus influenzae type b vaccines.
204 , and whole-cell pertussis; hepatitis B; and Haemophilus influenzae type b) and pneumococcal vaccine.
205 , tetanus, pertussis, hepatitis B virus, and Haemophilus influenzae type b), yellow fever, measles, a
206 ent vaccine (diphtheria, tetanus, pertussis, Haemophilus influenzae type b, and hepatitis B) at 6, 10
207 include pneumococcus, group B Streptococcus, Haemophilus influenzae type b, and meningococcus vaccine
208  to characterise disease syndromes caused by Haemophilus influenzae type b, pneumococcus, rotavirus,
209 cine priming, before a booster of a combined Haemophilus influenzae type b-MenC conjugate vaccine and
210                                The bacterium Haemophilus influenzae typically colonizes the human upp
211 the sialic acid-specific SBP, SiaP, from the Haemophilus influenzae virulence-related SiaPQM TRAP tra
212 ctivity against an efflux-negative strain of Haemophilus influenzae was 4- to 8-fold higher, the comb
213                                              Haemophilus influenzae was present in more adenoids from
214 caused by either Streptococcus pneumoniae or Haemophilus influenzae were compared for pathogen-specif
215 phtericum and Corynebacterium propinquum and Haemophilus influenzae were significantly more abundant
216 enes, Staphylococcus aureus, and potentially Haemophilus influenzae).
217                  Pathogenic bacteria such as Haemophilus influenzae, a major cause of lower respirato
218 ibrocytes) are able to recognize nontypeable Haemophilus influenzae, a major pathogen of middle ear i
219 ccus aureus, 10 Streptococcus pneumoniae, 10 Haemophilus influenzae, and 5 Escherichia coli isolates
220 orins from Neisseriae, Shigella, Salmonella, Haemophilus influenzae, and Fusobacterium nucleatum, whi
221                    Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis are th
222 antitative PCR for Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis were p
223 ovirus, bocavirus, Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis were s
224 c airway bacteria (Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis) were
225 as Escherichia coli, Neisseria meningitidis, Haemophilus influenzae, and Pasteurella multocida.
226 phocholine, phosphocholine-modified LPS from Haemophilus influenzae, and phosphocholine-modified prot
227 phylococci (CoNS), Streptococcus pneumoniae, Haemophilus influenzae, and Pseudomonas aeruginosa.
228 eumoniae, Staphylococcus aureus, Nontypeable Haemophilus influenzae, and Pseudomonas aeruginosa.
229 thogens: Pseudomonas aeruginosa, nontypeable Haemophilus influenzae, and Salmonella enterica serovar
230 ptococcus pneumoniae, Moraxella catarrhalis, Haemophilus influenzae, and Staphylococcus aureus.
231                      Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are
232 atory tract pathogens Moraxella catarrhalis, Haemophilus influenzae, and Streptococcus pneumoniae, bu
233  is caused mainly by Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae, in
234 eudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, Aspergillus species, Streptococc
235 protection against PC-expressing nontypeable Haemophilus influenzae, but not PC-negative nontypeable
236 , we turned our attention to bacteria, i.e., Haemophilus influenzae, expressing cell-surface adhesins
237             Novel mouse models of Chlamydia, Haemophilus influenzae, influenza, and respiratory syncy
238 a catarrhalis, Streptococcus pneumoniae, and Haemophilus influenzae, is associated with later develop
239 tly from CSF specimens: Escherichia coli K1, Haemophilus influenzae, Listeria monocytogenes, Neisseri
240 ccines with/without protein D of nontypeable Haemophilus influenzae, M. catarrhalis has become a high
241  were cultured for Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staph
242 piratory pathogens Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staph
243 irways with the pathogenic bacterial strains Haemophilus influenzae, Moraxella catarrhalis, and Strep
244 y associated with bacterial coinfection with Haemophilus influenzae, Moraxella catarrhalis, or Strept
245             We assessed this association for Haemophilus influenzae, Moraxella catarrhalis, Staphyloc
246 lude Escherichia coli, Campylobacter jejuni, Haemophilus influenzae, Neisseria meningitidis, and Past
247                               Infection with Haemophilus influenzae, Neisseria meningitidis, and Stre
248 cterial pathogens (Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Mycoplas
249  used to vaccinate children globally against Haemophilus influenzae, pneumococcus, and meningococcus.
250                       The arfA hairpins from Haemophilus influenzae, Proteus mirabilis, Vibrio fische
251  influenzae, but not PC-negative nontypeable Haemophilus influenzae, relative to wild-type mice.
252 morphism in humans evades TbpA variants from Haemophilus influenzae, revealing a functional basis for
253 tococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, S suis) and O tsutsugamushi, Ric
254 and 24 months of age were cultured to detect Haemophilus influenzae, Streptococcus pneumoniae, Moraxe
255 usters characterized by enrichment of either Haemophilus influenzae, Streptococcus, Corynebacterium,
256                   Working with the bacterium Haemophilus influenzae, we found that MolBC-A functions
257 the sialic acid TRAP transporter SiaPQM from Haemophilus influenzae, where the membrane proteins are
258 een H. parainfluenzae and its close relative Haemophilus influenzae, which is also commonly carried w
259 w that EVI1 negatively regulates nontypeable Haemophilus influenzae- and TNF-alpha-induced NF-kappaB-
260 nd in some regions, for all pathogens except Haemophilus influenzae.
261 ssue, which included known pathogens such as Haemophilus influenzae.
262 hylococcus and Gram-negative bacteria and to Haemophilus influenzae.
263 t line of defense against the human pathogen Haemophilus influenzae.
264 ococcus pneumoniae, and 54% for non-typeable Haemophilus influenzae.
265 were previously misidentified as nontypeable Haemophilus influenzae.
266 ainst efflux-negative strains of E. coli and Haemophilus influenzae.
267 s successful in creating unmarked mutants in Haemophilus influenzae.
268 crobial peptides (sap operon) in nontypeable Haemophilus influenzae.
269 ccus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae.
270 ng Streptococcus pneumoniae and non-typeable Haemophilus influenzae.
271                           Here we identified Haemophilus lipoprotein e (P4) as a receptor for ECM pro
272                                   The genera Haemophilus (log2 fold change -2.15, P=.003), Dialister
273 t incursions of Streptococcus, Moraxella, or Haemophilus marked virus-associated ARIs.
274 pecific bacteria such as Enterobacteriaceae, Haemophilus, Methylobacterium, and Ralstonia species wer
275 cts were uniquely enriched in members of the Haemophilus, Neisseria, Fusobacterium, and Porphyromonas
276 ond their ability to mediate DNA transfer in Haemophilus, OMV stimulation of host immunomodulatory cy
277 le profiles were marked by high abundance of Haemophilus or Streptococcus.
278                                              Haemophilus parainfluenzae is a nutritionally fastidious
279 Streptococcus mitis, Rothia mucilaginosa and Haemophilus parainfluenzae were the most significantly a
280 ubation of asthmatic airway macrophages with Haemophilus parainfluenzae, a uniquely expanded potentia
281 his technology for the identification of 103 Haemophilus parainfluenzae, Aggregatibacter aphrophilus,
282 lobacter gracilis, Capnocytophaga granulosa, Haemophilus parainfluenzae, and Lautropia mirabilis were
283 ardiobacterium hominis, Gemella haemolysans, Haemophilus parainfluenzae, Kingella oralis, Lautropia m
284 05); 1 prominent component of this group was Haemophilus parainfluenzae.
285                                              Haemophilus parasuis causes Glasser's disease and pneumo
286                                              Haemophilus parasuis is a diverse bacterial species that
287                                              Haemophilus parasuis is an opportunistic pathogen that c
288                                              Haemophilus parasuis is the causative agent of Glasser's
289 y 56% identical amino acids, both FH-binding Haemophilus proteins similarly interacted with the compl
290 distinguish H. haemolyticus from its closest Haemophilus relatives and provide clues to the identity
291   We developed mouse models of Chlamydia and Haemophilus respiratory infection-mediated, ovalbumin-in
292 obiota diversity (P = .009) and dominance of Haemophilus species operational taxonomic units (P = .01
293 alidated using a panel of well-characterized Haemophilus spp.
294           The occurrence and significance of Haemophilus spp. isolated from the genitourinary tract a
295                               In particular, Haemophilus spp. were depleted in individuals with RA at
296  activity among staphylococci, streptococci, Haemophilus spp., and Moraxella catarrhalis were minimal
297                                We identified Haemophilus, Streptococcus, Neisseria, and Veillonella s
298 able Haemophilus influenzae and identify the Haemophilus surface protein E (PE) as a new plasminogen-
299 und heme, whose acquisition is essential for Haemophilus survival.
300    First characterized as transformasomes in Haemophilus, these membranous blebs facilitate transfer

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top