戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 enes, Staphylococcus aureus, and potentially Haemophilus influenzae).
2 hylococcus and Gram-negative bacteria and to Haemophilus influenzae.
3 t line of defense against the human pathogen Haemophilus influenzae.
4 ococcus pneumoniae, and 54% for non-typeable Haemophilus influenzae.
5 were previously misidentified as nontypeable Haemophilus influenzae.
6 ainst efflux-negative strains of E. coli and Haemophilus influenzae.
7 s successful in creating unmarked mutants in Haemophilus influenzae.
8 crobial peptides (sap operon) in nontypeable Haemophilus influenzae.
9 luding the phylogenetically related pathogen Haemophilus influenzae.
10 eria gonorrheae, Neisseria meningitidis, and Haemophilus influenzae.
11 dA from Yersinia enterocolitica and Hia from Haemophilus influenzae.
12 on between influenza virus and the bacterium Haemophilus influenzae.
13  Bordetella pertussis, Escherichia coli, and Haemophilus influenzae.
14  of both typeable and nontypeable strains of Haemophilus influenzae.
15 fastidious gram-negative pathogens including Haemophilus influenzae.
16 y bacterial pathogens, including nontypeable Haemophilus influenzae.
17 d is absent from the closely related species Haemophilus influenzae.
18 ccus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae.
19 ng Streptococcus pneumoniae and non-typeable Haemophilus influenzae.
20 nd in some regions, for all pathogens except Haemophilus influenzae.
21 ssue, which included known pathogens such as Haemophilus influenzae.
22 representing a reduced relative abundance of Haemophilus influenzae (35.3% [5.5-91.6] vs 6.7% [0.8-74
23                                              Haemophilus influenzae, a gram-negative pathogen causing
24                  Pathogenic bacteria such as Haemophilus influenzae, a major cause of lower respirato
25 ibrocytes) are able to recognize nontypeable Haemophilus influenzae, a major pathogen of middle ear i
26                                              Haemophilus influenzae also uses an enzyme, GlpQ, to hyd
27 colonization by Streptococcus pneumoniae and Haemophilus influenzae among children has been noted in
28  Neisseria meningitidis and ceftriaxone, and Haemophilus influenzae and ceftriaxone.
29  sensitivity and specificity for identifying Haemophilus influenzae and differentiating it from H. ha
30 activity has been achieved against wild-type Haemophilus influenzae and efflux-deficient mutants of E
31                   Distinguishing nontypeable Haemophilus influenzae and Haemophilus haemolyticus isol
32 ator to the respiratory pathogen nontypeable Haemophilus influenzae and identify the Haemophilus surf
33 n represents the initial interaction between Haemophilus influenzae and its human host.
34 s pneumoniae and the Gram-negative pathogens Haemophilus influenzae and Moraxella catarrhalis .
35 nization with Gram-negative bacteria such as Haemophilus influenzae and Moraxella catarrhalis was fou
36 animal models of the Gram-negative pathogens Haemophilus influenzae and Neisseria meningitidis We hyp
37  reveal their striking genetic similarity to Haemophilus influenzae and other members of the Pasteure
38  in several gram-negative bacteria including Haemophilus influenzae and Pasteurella multocida.
39  or murine origin in response to nontypeable Haemophilus influenzae and Staphylococcus aureus.
40  vaccination with conjugate vaccines against Haemophilus influenzae and Streptococcus pneumoniae has
41                                              Haemophilus influenzae and Streptococcus pneumoniae were
42 piratory syncytial virus; RSV) and bacteria (Haemophilus influenzae and Streptococcus pneumoniae) in
43 ion of EVI1 itself is induced by nontypeable Haemophilus influenzae and TNF-alpha in an NF-kappaB-dep
44                In the Gram-negative bacteria Haemophilus influenzae and Vibrio cholerae, the master r
45 ccus aureus, 10 Streptococcus pneumoniae, 10 Haemophilus influenzae, and 5 Escherichia coli isolates
46 orins from Neisseriae, Shigella, Salmonella, Haemophilus influenzae, and Fusobacterium nucleatum, whi
47                    Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis are th
48 antitative PCR for Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis were p
49 ovirus, bocavirus, Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis were s
50 c airway bacteria (Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis) were
51 ive conjugate vaccines against S pneumoniae, Haemophilus influenzae, and Neisseria meningitides to ch
52 as Escherichia coli, Neisseria meningitidis, Haemophilus influenzae, and Pasteurella multocida.
53 phocholine, phosphocholine-modified LPS from Haemophilus influenzae, and phosphocholine-modified prot
54 phylococci (CoNS), Streptococcus pneumoniae, Haemophilus influenzae, and Pseudomonas aeruginosa.
55 eumoniae, Staphylococcus aureus, Nontypeable Haemophilus influenzae, and Pseudomonas aeruginosa.
56 thogens: Pseudomonas aeruginosa, nontypeable Haemophilus influenzae, and Salmonella enterica serovar
57 atients, including Burkholderia cenocepacia, Haemophilus influenzae, and Staphylococcus aureus.
58 ptococcus pneumoniae, Moraxella catarrhalis, Haemophilus influenzae, and Staphylococcus aureus.
59                      Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are
60 atory tract pathogens Moraxella catarrhalis, Haemophilus influenzae, and Streptococcus pneumoniae, bu
61  is caused mainly by Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae, in
62 w that EVI1 negatively regulates nontypeable Haemophilus influenzae- and TNF-alpha-induced NF-kappaB-
63            Immunoglobulin (Ig)A proteases of Haemophilus influenzae are highly specific endopeptidase
64 ococcus aureus, Streptococcus pneumoniae and Haemophilus influenzae are the major causes of conjuncti
65                     Here, using non-typeable Haemophilus influenzae as a model organism, we report th
66 eudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, Aspergillus species, Streptococc
67 5922 (0.008 to 0.03 mug/ml and 30 to 36 mm), Haemophilus influenzae ATCC 49247 (0.002 to 0.015 mug/ml
68  pneumoniae ATCC 49619 (disk and broth), and Haemophilus influenzae ATCC 49247 (disk and broth).
69 ureus ATCC 29213 (MIC range, 1 to 4 mug/ml), Haemophilus influenzae ATCC 49247 (MIC and disk diffusio
70 and ATCC 25923, Escherichia coli ATCC 25922, Haemophilus influenzae ATCC 49247, and Streptococcus pne
71 23, Streptococcus pneumoniae ATCC 49619, and Haemophilus influenzae ATCC 4927 strains were evaluated.
72 in Southern England immunized with DTaP5/IPV/Haemophilus influenzae b (Hib-TT) vaccine at 2-3-4 month
73  syncytial virus, parainfluenza viruses, and Haemophilus influenzae being the most common.
74                   The Hia autotransporter of Haemophilus influenzae belongs to the trimeric autotrans
75                                          The Haemophilus influenzae beta-carbonic anhydrase (HICA) al
76                                              Haemophilus influenzae beta-carbonic anhydrase (HICA) is
77 with the emergence of the clonal variants of Haemophilus influenzae biogroup aegyptius causing Brazil
78 protection against PC-expressing nontypeable Haemophilus influenzae, but not PC-negative nontypeable
79 ccus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae, but the mechanism by which they
80         We present the Arg160His mutation of Haemophilus influenzae carbonic anhydrase (HICA), which
81 ve a significantly lower risk of nontypeable Haemophilus influenzae carriage in particular (relative
82             Pneumococcus, meningococcus, and Haemophilus influenzae cause a similar spectrum of infec
83 ella kingae (HACEK) clinical isolates and 20 Haemophilus influenzae clinical isolates.
84                                 Non-typeable Haemophilus influenzae contains an N(6)-adenine DNA-meth
85  homodimeric periplasmic domain of TolR from Haemophilus influenzae, determined with conventional, NO
86                                        Using Haemophilus influenzae Eagan strains expressing well-cha
87                                              Haemophilus influenzae efficiently colonizes and persist
88 son of derivatives of a laboratory strain of Haemophilus influenzae expressing either surface-associa
89 , we turned our attention to bacteria, i.e., Haemophilus influenzae, expressing cell-surface adhesins
90                               Unencapsulated Haemophilus influenzae frequently causes noninvasive upp
91  marker for differentiating nontypeable (NT) Haemophilus influenzae from Haemophilus haemolyticus in
92 terial burden and a significant outgrowth of Haemophilus influenzae from the existing microbiota of s
93                  The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD(+) u
94 oach was applied to comprehensively identify Haemophilus influenzae genes required to delay bacterial
95 ed AIMIE to analyze the Escherichia coli and Haemophilus influenzae genomes in order to demonstrate t
96                    A related human pathogen, Haemophilus influenzae, has been better studied, and man
97                                              Haemophilus influenzae (Hi) causes respiratory tract inf
98                    Clearance of encapsulated Haemophilus influenzae (Hi) required both TLR and nucleo
99 y to inhibit catalytic activity of DapE from Haemophilus influenzae (HiDapE) and ArgE from Escherichi
100 he ferric uptake systems V. cholerae Fbp and Haemophilus influenzae Hit was expressed.
101 and its close sequence homologue HI0827 from Haemophilus influenzae (HiYciA).
102                                          The Haemophilus influenzae HMW1 adhesin is an N-linked glyco
103                                          The Haemophilus influenzae HMW1 adhesin is secreted via the
104                                          The Haemophilus influenzae HMW1 adhesin mediates adherence t
105                             Secretion of the Haemophilus influenzae HMW1 adhesin occurs via the two-p
106 ch data across various human pathogens (e.g. Haemophilus influenzae, human immunodeficiency virus (HI
107 colonization by Streptococcus pneumoniae and Haemophilus influenzae in a Toll-like receptor (TLR)-dep
108 ficiency further affected internalization of Haemophilus influenzae in bronchial epithelial cells.
109 d for TolR is of the periplasmic domain from Haemophilus influenzae in which N- and C-terminal residu
110 % vs 23%-31% of AOM isolates), while that of Haemophilus influenzae increased (41%-43% vs 56%-57%) pr
111     In this study, we found that nontypeable Haemophilus influenzae induces the association of Itch w
112 he survival rate after a lethal non-typeable Haemophilus influenzae infection in wild-type mice, but
113 tudy persistent Streptococcus pneumoniae and Haemophilus influenzae infections, to show that structur
114             Novel mouse models of Chlamydia, Haemophilus influenzae, influenza, and respiratory syncy
115                                   Nontypable Haemophilus influenzae is a common cause of human diseas
116                                              Haemophilus influenzae is a gram-negative bacterium that
117                                              Haemophilus influenzae is a Gram-negative human pathogen
118                                              Haemophilus influenzae is a human-specific gram-negative
119                                  Nontypeable Haemophilus influenzae is a major cause of localized res
120                                              Haemophilus influenzae is a rare cause of soft tissue in
121                                              Haemophilus influenzae is a significant causative agent
122                                              Haemophilus influenzae is an obligate human pathogen tha
123                                 Non-typeable Haemophilus influenzae is an opportunistic pathogen of t
124                                              Haemophilus influenzae is both a human respiratory patho
125 lmonary inflammation induced by non-typeable Haemophilus influenzae is significantly attenuated in IR
126 a catarrhalis, Streptococcus pneumoniae, and Haemophilus influenzae, is associated with later develop
127 configurations were predicted in nontypeable Haemophilus influenzae isolates based on the presence of
128 e operon was significantly more prevalent in Haemophilus influenzae isolates causing otitis media and
129 -resolution X-ray structure determination of Haemophilus influenzae KDO8PP bound to KDO/VO3(-) and Ba
130                                 In contrast, Haemophilus influenzae KdtA (HiKdtA) transfers only one
131 d antimicrobial activity against a strain of Haemophilus influenzae lacking its major efflux pump.
132 tly from CSF specimens: Escherichia coli K1, Haemophilus influenzae, Listeria monocytogenes, Neisseri
133  we have shown that the C-terminal domain of Haemophilus influenzae LpoA (HiLpoA) has a highly conser
134           Here, we have purified E. coli and Haemophilus influenzae LpxB to near homogeneity on a 10-
135 , and detailed enzymatic characterization of Haemophilus influenzae LpxH (HiLpxH).
136 ccines with/without protein D of nontypeable Haemophilus influenzae, M. catarrhalis has become a high
137 ed as having meningococcal, pneumococcal, or Haemophilus influenzae meningitis in the period 1977-200
138                                              Haemophilus influenzae (MIC(50), </= 0.008 microg/mL; MI
139  were cultured for Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staph
140 piratory pathogens Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staph
141 irways with the pathogenic bacterial strains Haemophilus influenzae, Moraxella catarrhalis, and Strep
142 y associated with bacterial coinfection with Haemophilus influenzae, Moraxella catarrhalis, or Strept
143             We assessed this association for Haemophilus influenzae, Moraxella catarrhalis, Staphyloc
144  pathogens were detected frequently, notably Haemophilus influenzae (mostly nontypeable) together wit
145 ium, Bacillus subtilis, Helicobacter pylori, Haemophilus influenzae, Mycobacterium tuberculosis, Pseu
146 re Pseudomonas aeruginosa (n = 10 patients), Haemophilus influenzae (n = 12), Prevotella (n = 18), an
147 s simplex virus [n = 5], adenovirus [n = 5], Haemophilus influenzae [n = 5], and Streptococcus pneumo
148 lude Escherichia coli, Campylobacter jejuni, Haemophilus influenzae, Neisseria meningitidis, and Past
149                               Infection with Haemophilus influenzae, Neisseria meningitidis, and Stre
150 cterial pathogens (Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Mycoplas
151         It is closely related to nontypeable Haemophilus influenzae (NT H. influenzae).
152 ta-lactamase-producing strain of nontypeable Haemophilus influenzae (NTHi 86-028NP) and an isogenic m
153             The mucosal pathogen nontypeable Haemophilus influenzae (NTHi) adheres to the respiratory
154        Hia is a major adhesin of nontypeable Haemophilus influenzae (NTHi) and has long been investig
155               Biofilms formed by nontypeable Haemophilus influenzae (NTHI) are central to the chronic
156     Haemophilus haemolyticus and nontypeable Haemophilus influenzae (NTHi) are closely related upper
157  by Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) are frequently implicated
158                                  Nontypeable Haemophilus influenzae (NTHI) are Gram-negative bacteria
159 istic human respiratory pathogen nontypeable Haemophilus influenzae (NTHI) are required for type IV p
160                                  Nontypeable Haemophilus influenzae (NTHI) bacteria are commensals in
161  typically recovered quantity of nontypeable Haemophilus influenzae (NTHi) bacteria in an ex vivo mid
162 ocator function is necessary for nontypeable Haemophilus influenzae (NTHI) behaviors that mediate dis
163 ram-negative commensal bacterium nontypeable Haemophilus influenzae (NTHI) can cause respiratory trac
164                                  Nontypeable Haemophilus influenzae (NTHi) causes pulmonary infection
165                                  Nontypeable Haemophilus influenzae (NTHi) exclusively infects humans
166                                  Nontypeable Haemophilus influenzae (NTHI) forms biofilms in the midd
167                                  Nontypeable Haemophilus influenzae (NTHi) frequently causes noninvas
168                       Studies of nontypeable Haemophilus influenzae (NTHi) have demonstrated that a n
169 reptococcus pneumoniae (Spn) and nontypeable Haemophilus influenzae (NTHi) in stringently defined oti
170 xed Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) infections (M-OM) and thos
171                                  Nontypeable Haemophilus influenzae (NTHi) initiates infection by col
172                                  Nontypeable Haemophilus influenzae (NTHi) is a bacterium that reside
173                                  Nontypeable Haemophilus influenzae (NTHI) is a commensal inhabitant
174                                  Nontypeable Haemophilus influenzae (NTHi) is a commensal microorgani
175                                  Nontypeable Haemophilus influenzae (NTHI) is a common commensal and
176                                  Nontypeable Haemophilus influenzae (NTHI) is a Gram-negative bacteri
177                                  Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative, opport
178                                  Nontypeable Haemophilus influenzae (NTHI) is a leading cause of oppo
179                                  Nontypeable Haemophilus influenzae (NTHI) is a leading cause of otit
180                                  Nontypeable Haemophilus influenzae (NTHi) is a major bacterial patho
181                                 Non-typeable Haemophilus influenzae (NTHi) is a major cause of mucosa
182                                  Nontypeable Haemophilus influenzae (NTHI) is a respiratory commensal
183                                  Nontypeable Haemophilus influenzae (NTHI) is an extremely common air
184                                  Nontypeable Haemophilus influenzae (NTHi) is an important bacterial
185                     Virulence of nontypeable Haemophilus influenzae (NTHi) is dependent on the decora
186 am-negative pathogenic bacterium nontypeable Haemophilus influenzae (NTHi) is surface exposed and a l
187                                  Nontypeable Haemophilus influenzae (NTHI) is the causative agent of
188                                  Nontypeable Haemophilus influenzae (NTHi) is the dominant bacterium
189                                  Nontypeable Haemophilus influenzae (NTHi) is the leading bacterial p
190                       Twenty-one nontypeable Haemophilus influenzae (NTHi) isolates from the throats
191  vaccine against nonencapsulated isolates of Haemophilus influenzae (NTHi) lies in the genetic divers
192 ere we examine the impact of the nontypeable Haemophilus influenzae (NTHI) ModA2 phasevarion on patho
193                                  Nontypeable Haemophilus influenzae (NTHi) organisms are obligate par
194                                  Nontypeable Haemophilus influenzae (NTHi) persists in the airways in
195     Many publications state that nontypeable Haemophilus influenzae (NTHi) produces biofilms.
196             A subset of invasive nontypeable Haemophilus influenzae (NTHI) strains has evidence of IS
197                                  Nontypeable Haemophilus influenzae (NTHi) was selected as a model pa
198 ce lipooligosaccharides (LOS) of nontypeable Haemophilus influenzae (NTHi), a human-specific commensa
199                                  Nontypeable Haemophilus influenzae (NTHI), an opportunistic pathogen
200                                  Nontypeable Haemophilus influenzae (NTHI), an opportunistic pathogen
201 with bacterial opportunists like nontypeable Haemophilus influenzae (NTHi), and a wealth of evidence
202 were calculated for pneumococcal, nontypable Haemophilus influenzae (NTHi), Moraxella catarrhalis, St
203 of several adhesins expressed by nontypeable Haemophilus influenzae (NTHI), the outer membrane protei
204 l collapse of biofilms formed by nontypeable Haemophilus influenzae (NTHI), those directed against a
205 ctions with pathogens, including nontypeable Haemophilus influenzae (NTHI), yet the reasons for this
206 l impairment of phagocytosis for nontypeable Haemophilus influenzae (NTHI).
207 ce exposed to cigarette smoke or nontypeable Haemophilus influenzae (NTHi).
208 E) responses of ccl3(-/-)mice to nontypeable Haemophilus influenzae (NTHi).
209  after middle ear infection with nontypeable Haemophilus influenzae (NTHi).
210 8(-/-) mice were inoculated with nontypeable Haemophilus influenzae (NTHi).
211 by respiratory pathogens such as nontypeable Haemophilus influenzae (NTHi).
212  diseases are commonly caused by nontypeable Haemophilus influenzae (NTHi).
213 onization strategies employed by nontypeable Haemophilus influenzae (NTHi).
214 evelopment and colonization with nontypeable Haemophilus influenzae (NTHi).
215 asion by lung microbiota such as nontypeable Haemophilus influenzae (NTHi).
216 tly colonized with bacteria [eg, nontypeable Haemophilus influenzae (NTHi)] that cause pulmonary infl
217                    In contrast, responses to Haemophilus influenzae occurred after either basolateral
218  crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 A resolution, a
219 or upon acute exposure to either nontypeable Haemophilus influenzae or ovalbumin.
220 onfidence interval [CI], 1.90 and 10.19) and Haemophilus influenzae (OR, 2.04; 95% CI, 1.38 and 3.02)
221      During model murine nasal colonization, Haemophilus influenzae outcompetes another member of the
222  (p = 0.001), NFkB activation by nontypeable Haemophilus influenzae (p = 0.001), TLR4 (p = 0.008) and
223 nces, most notably in potentially pathogenic Haemophilus influenzae (P = 2.7 x 10(-20)), from a preex
224  used to vaccinate children globally against Haemophilus influenzae, pneumococcus, and meningococcus.
225 ts of the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D-conjugate vaccine (PHiD
226                                              Haemophilus influenzae protein F (PF) is an important vi
227                       The arfA hairpins from Haemophilus influenzae, Proteus mirabilis, Vibrio fische
228         The crystal structure of HI0827 from Haemophilus influenzae Rd KW20, initially annotated "hyp
229 m phylogenetically distant Aquifex aeolicus, Haemophilus influenzae Rd, and Synechocystis sp. were fo
230  influenzae, but not PC-negative nontypeable Haemophilus influenzae, relative to wild-type mice.
231 lls) to the respiratory pathogen nontypeable Haemophilus influenzae resulted in a marked increase in
232 us, while challenge of Trim29(-/-) mice with Haemophilus influenzae resulted in lethal lung inflammat
233 morphism in humans evades TbpA variants from Haemophilus influenzae, revealing a functional basis for
234 tococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, S suis) and O tsutsugamushi, Ric
235                      The introduction of the Haemophilus influenzae serotype b (Hib) conjugate vaccin
236 tis in a healthy adult patient, secondary to Haemophilus influenzae serotype f infection, and we revi
237 rologous genetic background of a nonadherent Haemophilus influenzae strain, and quantitative assays r
238 d the ability to bind FN to a non-FN-binding Haemophilus influenzae strain.
239                                              Haemophilus influenzae strains are classified as typeabl
240                                              Haemophilus influenzae strains OM12, which expresses the
241 and 24 months of age were cultured to detect Haemophilus influenzae, Streptococcus pneumoniae, Moraxe
242   Chinchillas were infected with nontypeable Haemophilus influenzae, Streptococcus pneumoniae, or a c
243 usters characterized by enrichment of either Haemophilus influenzae, Streptococcus, Corynebacterium,
244 e show that glucocorticoids and non-typeable Haemophilus influenzae synergistically upregulate IRAK-M
245 abs positive for Streptococcus pneumoniae or Haemophilus influenzae than were males (OR 9.09; 95% CI
246                 Signaling mechanisms used by Haemophilus influenzae to adapt to conditions it encount
247             Upon exposure of serum-sensitive Haemophilus influenzae to human serum, Ecb protected the
248  of a collection of compound fragments using Haemophilus influenzae TrmD identified inhibitory, fused
249 n the first detection of 2 cases of invasive Haemophilus influenzae type a (Hia) disease in Italy.
250 t diphtheria, tetanus, pertussis, polio, and Haemophilus influenzae type b (DTaP-IPV-Hib) administere
251 s-acellular pertussis-inactivated poliovirus-Haemophilus influenzae type b (DTaP-IPV-Hib) vaccine sin
252               A conjugate vaccine containing Haemophilus influenzae type b (Hib) and group C meningoc
253 treptococcus pneumoniae (S. pneumoniae), and Haemophilus influenzae type b (Hib) are three most commo
254 ed (DTaP), inactivated poliovirus (IPV), and Haemophilus influenzae type b (Hib) conjugate vaccine (D
255 e United States in the early 1990s, when the Haemophilus influenzae type b (Hib) conjugate vaccine fo
256                                              Haemophilus influenzae type b (Hib) conjugate vaccine, d
257                        The widespread use of Haemophilus influenzae type b (Hib) conjugate vaccines h
258                    The incidence of invasive Haemophilus influenzae type b (Hib) disease has signific
259                                              Haemophilus influenzae type b (Hib) is a leading cause o
260 ng hospital in Malawi during introduction of Haemophilus influenzae type b (Hib) vaccination and the
261 rst country in Africa to introduce conjugate Haemophilus influenzae type b (Hib) vaccine, which, as i
262  Streptococcus pneumoniae polysaccharide and Haemophilus influenzae type b (Hib) vaccines in ITP pati
263                           Protection against Haemophilus influenzae type b (Hib), a rapidly invading
264 ribitol (PRP) polysaccharides extracted from Haemophilus influenzae type b (Hib), and the correspondi
265 duction of vaccines against pneumococcus and Haemophilus influenzae type b (the most important causes
266  become the predominant invasive pathogen as Haemophilus influenzae type b and pneumococcal vaccine u
267 ca, the widespread use of vaccines targeting Haemophilus influenzae type b and Streptococcus pneumoni
268 and of occult bacteremia since the advent of Haemophilus influenzae type b and Streptococcus pneumoni
269 -tetanus-acellular pertussis-inactived polio-Haemophilus influenzae type b combined vaccine (DTaP-IPV
270  C, W, Y polysaccharide vaccine (PsACWY); or Haemophilus influenzae type b conjugate vaccine (Hib-TT)
271        Literature on hepatitis B, rotavirus, Haemophilus influenzae type b conjugate, and pneumococca
272 clinical significance and characteristics of Haemophilus influenzae type b genogroup strains isolated
273         Five genetic islands (HiGI) found in Haemophilus influenzae type b strain Eagan were used as
274 a, tetanus, pertussis, measles, rubella, and Haemophilus influenzae type b vaccine antigens were comp
275 s-acellular pertussis-inactivated poliovirus/Haemophilus influenzae type b vaccine; age 6/10/ 14 week
276  that pediatric providers conserve available Haemophilus influenzae type B vaccines by delaying the a
277               Because of a notable recall of Haemophilus influenzae type B vaccines by Merck & Co Inc
278 r pertussis, inactivated polio, hepatitis B, Haemophilus influenzae type b vaccines); (2) 4CMenB at 2
279 ng countries in 2015, using pneumococcal and Haemophilus influenzae type b vaccines.
280 , and whole-cell pertussis; hepatitis B; and Haemophilus influenzae type b) and pneumococcal vaccine.
281 , tetanus, pertussis, hepatitis B virus, and Haemophilus influenzae type b), yellow fever, measles, a
282 ent vaccine (diphtheria, tetanus, pertussis, Haemophilus influenzae type b, and hepatitis B) at 6, 10
283 include pneumococcus, group B Streptococcus, Haemophilus influenzae type b, and meningococcus vaccine
284  against some types of bacterial meningitis (Haemophilus influenzae type b, Neisseria meningitidis gr
285  to characterise disease syndromes caused by Haemophilus influenzae type b, pneumococcus, rotavirus,
286 cine priming, before a booster of a combined Haemophilus influenzae type b-MenC conjugate vaccine and
287  from ALRI, after pneumococcal pneumonia and Haemophilus influenzae type b.
288 and, when applicable, use of vaccine against Haemophilus influenzae type b.
289  pathogens were Streptococcus pneumoniae and Haemophilus influenzae (type B and non-type B).
290                                The bacterium Haemophilus influenzae typically colonizes the human upp
291                  The obligate human pathogen Haemophilus influenzae utilizes a siderophore-independen
292 the sialic acid-specific SBP, SiaP, from the Haemophilus influenzae virulence-related SiaPQM TRAP tra
293 ctivity against an efflux-negative strain of Haemophilus influenzae was 4- to 8-fold higher, the comb
294                                              Haemophilus influenzae was present in more adenoids from
295                   Working with the bacterium Haemophilus influenzae, we found that MolBC-A functions
296 caused by either Streptococcus pneumoniae or Haemophilus influenzae were compared for pathogen-specif
297 phtericum and Corynebacterium propinquum and Haemophilus influenzae were significantly more abundant
298 the sialic acid TRAP transporter SiaPQM from Haemophilus influenzae, where the membrane proteins are
299 een H. parainfluenzae and its close relative Haemophilus influenzae, which is also commonly carried w
300 on X-ray crystal structures of the DapE from Haemophilus influenzae with one and two zinc ions bound

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top