戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 novel receptor but to the well-characterized M3 receptor.
2 l as activation of the Gq-coupled muscarinic M3 receptor.
3 thylpiperidine methobromide (4-DAMP) for the M3 receptor.
4       Of 16 molecules tested, 8 bound to the M3 receptor.
5 or but minimal effect upon expression of the M3 receptor.
6 tion at M4 receptors and an action at M2 and M3 receptors.
7 a localization similar to that of the M2 and M3 receptors.
8 vement of non-M3 receptors (possibly M5) and M3 receptors.
9 ited marked functional selectivity for m1 vs m3 receptors.
10 mooth muscle cells are mediated primarily by M3 receptors.
11  (HT29), both of which express predominantly m3 receptors.
12 y coexpression of HA-tagged muscarinic m1 or m3 receptors.
13 ich was absent in cells lacking either M1 or M3 receptors.
14 AR), dopamine, CCKA, CCKB and the muscarinic M3 receptors.
15 for InsP3R, engineered to express muscarinic M3 receptors.
16 ously attributed to activation of the M2 and M3 receptors.
17 tivation of ICat by co-stimulation of M2 and M3 receptors.
18              Muscarine-induced activation of M3 receptors (0-12 min) decreased release, whereas M1 ac
19  cerevisiae) that requires agonist-dependent M3 receptor activation for cell growth.
20                           To examine whether M3 receptor activation involves changes in the relative
21                                Surprisingly, M3 receptor activation rarely produced a detectable incr
22 udies on the structural mechanisms governing M3 receptor activation, we generated an M3 receptor-expr
23 ha(q)-mediated Ca(2+) response to muscarinic M3 receptor activation.
24                        Furthermore, the anti-M3 receptor activity may negatively affect the secretory
25 ion to K(+) depolarization or in response to M3 receptor agonist Carbachol.
26                Antibodies against muscarinic M3 receptor and expression of costimulatory molecules (C
27 the signaling pathway lies downstream of the M3 receptor and may consist of products of phosphatidyli
28 es the parietal cell directly via muscarinic M3 receptors and indirectly by inhibiting somatostatin s
29   Monoclonal antibodies to mouse SSB/La, rat M3 receptor, and a rabbit polyclonal antiparotid secreto
30 ximately 3-fold by N-chloromethyl brucine at m3 receptors, and approximately 1.5-fold by brucine-N-ox
31 or M4-receptors, 260-fold lower affinity for M3-receptors, and 8200-fold lower affinity for M1-recept
32 was not reversed by the selective muscarinic M3 receptor antagonist 4-DAMP (100 nmol/L) but was block
33 ted the action of acetylcholine, whereas the M3 receptor antagonist 4-diphenylacetoxy-N-(2-chloroethy
34 TP was also prevented in the presence of the M3 receptor antagonist DAU 5884, and was absent in M1/M3
35  to Galphaq/11 antibody was inhibited by the m3 receptor antagonist, 4-DAMP, and binding to Galphai3
36                                    Selective M3 receptor antagonists and antagonists selective for M1
37                                   Muscarinic M3 receptor antagonists and tachykinin NK1 receptor anta
38 e-facilitating M5 and the release-inhibiting M3 receptors are likely to be located on nerve terminals
39 nvolves physical association of ARF with the M3 receptor as demonstrated by co-immunoprecipitation an
40 n M1/M3 receptor double-KO mice, identifying M3 receptors as primary oxo-m targets.
41 gs should guide the development of selective M3 receptor blockers that have little or no effect on ot
42 X-ray structure of the inactive state of the M3 receptor bound by the antagonist/inverse agonist tiot
43 e inhibited via the Gq/11-coupled muscarinic M3 receptor but that the pathways by which this occurs a
44 rs are exerted not only on postjunctional M1/M3 receptors but also at M2 presynaptic receptors.
45 ropic cooperativity in its interactions with M3 receptors (but not M2 receptors), and this cooperativ
46 35S]GTPgammaS) to membranes containing M1 to M3 receptors, but it increases ACh potency 3.5-fold at M
47 nd activation of Galphaq-coupled muscarinic (M3) receptors, compared with WT TASK3 channels.
48 istent with the presence of disulfide-linked m3 receptor complexes.
49                        Using chimeric M1 and M3 receptor constructs, the AC-42 minimal epitope has be
50  studies using differentially epitope-tagged m3' receptor constructs.
51 lls to analyze a series of double Cys mutant M3 receptors containing one Cys residue within the seque
52  of adenylyl cyclases V/VI via Galphai3, and m3 receptors couple to activation of the enzymes via Gbe
53 ficacy at m1 receptors and lower activity at m3 receptors coupled to phosphoinositide (PI) metabolism
54 receptor KO mice, significantly increased in M3 receptor-deficient mice, and significantly reduced (b
55 valently associated receptor dimers and that m3' receptor dimer formation was receptor subtype-specif
56 y roles in the formation of disulfide-linked m3' receptor dimers.
57                             The formation of m3' receptor dimers/multimers was confirmed in coimmunop
58 Immunological studies also demonstrated that m3' receptor dimers/multimers were abundantly expressed
59 ructs of ARF1/6 and PLD1/2 indicate that the M3 receptor displays a major ARF1-dependent route of PLD
60 or antagonist DAU 5884, and was absent in M1/M3 receptor double-KO mice, identifying M3 receptors as
61 ceptor in 1321N1 cells and an epitope-tagged M3 receptor expressed in COS7 cells substantially utiliz
62 ning M3 receptor activation, we generated an M3 receptor-expressing yeast strain (Saccharomyces cerev
63          When membrane lysates prepared from m3' receptor-expressing COS-7 cells were subjected to We
64                                              M3 receptor expression was increased, and some, but not
65  structure of the G(q/11)-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug
66 role in agonist-dependent endocytosis of the M3 receptor, had no effect on the constitutive internali
67 gonists and antagonists selective for M1 and M3 receptors have recently entered clinical trials and o
68 ts on the signaling of endogenous muscarinic M3 receptor in native HT-29 cells.
69 , 35.0-60.0; p<0.0001), with upregulation of M3 receptors in diverticular disease (diverticular disea
70 ction between adenosine A1 and muscarinic M1/M3 receptors in some tissues, either at the level of the
71 el biphasic role for muscarine and implicate M3 receptors in the inhibition and M1 receptors in the e
72                  We found that expression of M3 receptors increased in T1R3-depleted MIN6 cells and t
73 hat with the D2.50 residue deprotonated, the M3 receptor is bound by an allosteric sodium ion and con
74 cating that the anti-apoptotic effect of the M3 receptor is independent of receptor phosphorylation.
75  has neutral cooperativity with ACh at M1 to M3 receptors; it therefore demonstrates a powerful new f
76                            Muscarinic M1 and M3 receptors localized to submucosal glands, whereas M2
77  Ca(2+) signaling mediated by the muscarinic M3 receptor (M3R), the route of Ca(2+) entry (i.e., rele
78 ertaining to its interaction with muscarinic M3 receptor (M3R).
79   Autoantibodies that bind to the muscarinic M3 receptors (M3R), which regulate fluid secretion in sa
80 ivation of phospholipase C without affecting m3 receptor-mediated activation.
81 7 and the ED/SG mutant attenuated muscarinic M3 receptor-mediated Ca2+ mobilization.
82  CO2/H(+) independent mechanism involving M1/M3 receptor-mediated inositol 1,4,5-trisphosphate/Ca(+2)
83  CO2/H(+) independent mechanism involving M1/M3 receptor-mediated inositol 1,4,5-trisphosphate/Ca(+2)
84                Upregulation of smooth muscle M3 receptors might account for specific clinical, physio
85                                The Delta 565-M3 receptor mutant also underwent agonist-driven phospho
86 these endosomal membranes, whereas beta2 and M3 receptors now entered cells via clathrin-dependent en
87 ntramural neurons, interacts with muscarinic M3 receptors on parietal cells and has little, if any, e
88 ion increases mucus secretion via muscarinic M3 receptors on the submucosal glands.
89 l neural tissue-and smooth muscle muscarinic M3 receptors, on three histological sections of sigmoid
90 ceptors, heterologously expressed muscarinic M3 receptors, or by direct activation of inositol 1,4,5-
91 ally administered agonists of the muscarinic M3 receptor (pilocarpine and cevimeline) have recently b
92 ls in which a proportion of the cell surface M3 receptor population is a tetramer with rhombic, but n
93 eurons tested, confirming involvement of non-M3 receptors (possibly M5) and M3 receptors.
94                            Activation of the M3 receptor produced 2382 +/-478 nA of current which was
95 tion of noradrenergic alpha1B and muscarinic M3 receptors recombinantly expressed in the same Chinese
96 ng at presynaptic dopamine D2 and muscarinic M3 receptors, respectively.
97 pe human M2 and a RASSL variant of the human M3 receptor resulted in concurrent detection of each of
98     Furthermore, activation of the Delta 565-M3 receptor resulted in robust activation of the extrace
99        Further analysis of the Gq/11-coupled M3 receptor revealed that truncation of the carboxyl-tai
100 rough the Gs-coupled modified rat muscarinic M3 receptor (rM3Ds) induced appreciable dyskinesia in PD
101 r loops were replaced with the corresponding m3 receptor sequences were identified, which, in contras
102 490L) that led to robust agonist-independent M3 receptor signaling in both yeast and mammalian cells.
103 mining factor for the blockage efficiency of M3 receptor signaling under duration-controlled conditio
104 s RGS3 is a negative modulator of muscarinic m3 receptor signaling, and RGS5 is a negative modulator
105      Surprisingly, with agonist, the mutated M3 receptor still internalized and accumulated in cells
106 eta5-R7 is a crucial activator of muscarinic M3 receptor-stimulated insulin secretion.
107                             Importantly, the M3 receptor structure allows a structural comparison bet
108  well as with the previously reported M2 and M3 receptor structures, reveals differences in the ortho
109 This effect may be mediated primarily by the M3 receptor subtype and is phospholipase C (PLC) depende
110 stoma cells, which express predominantly the m3 receptor subtype, show qualitatively similar changes
111 positively with antibodies to the m1, m2,and m3 receptor subtypes but not with antibodies to the m4 r
112 lpha-synuclein and that of muscarinic M1 and M3 receptors suggests a role for this protein in choline
113  Cys-491), suggesting that the intracellular m3 receptor surface is characterized by pronounced backb
114 l importance, an antibody against muscarinic M3 receptor that can decrease secretory function when in
115 e, we subjected a region of the Q490L mutant M3 receptor that included TM V-VII to random mutagenesis
116 s antagonist profile suggests that it is the M3 receptor that mediates carbachol-induced insulin rele
117                                Mutant m2 and m3 receptors that contained extra Ala residues immediate
118 utions mapped to two distinct regions of the M3 receptor, the exofacial segments of TM V and VI and t
119                                  However, in M3 receptors, the disulfide cysteine mutations had no ef
120  formation of a multiprotein complex linking m3 receptors to tubulin since they interacted with both
121 or based on the crystal structure of the rat M3 receptor was constructed, and docking studies of comp
122             Laminar immunoreactivity for the m3 receptor was similar to the CytOx pattern, including
123 ne on neurogenically released ACh binding at M3 receptors was also detected in whole tissue as an inc
124                   Immunoreactivity to M2 and M3 receptors was found on goblet cell membranes subjacen
125        The ADP in O-LM cells, mediated by M1/M3 receptors, was associated with inhibition of an M cur
126 scarinic drive, mediated primarily by M1 and M3 receptors, was particularly important for wave propag
127 among the binding pockets between the M2 and M3 receptors, we selected molecules predicted by docking
128 cted toward the extracellular domains of the M3 receptor were capable of mediating the exocrine dysfu
129 alpha(q), Gbetagamma, tubulin, clathrin, and m3 receptors were analyzed by both cellular imaging and
130 nged between subtypes of mAChRs, chimeric m2/m3 receptors were analyzed for their properties of agoni
131 omotropic interactions of THA at both M2 and M3 receptors were markedly reduced by the cysteine mutat
132                   In muscle cells where only m3 receptors were preserved by selective receptor protec
133  effects of N-chloromethyl brucine on M2 and M3 receptors were shown to be qualitatively and quantita
134                                              M3 receptors were upregulated in patients with diverticu
135       In addition, these studies showed that m3' receptors were also able to form non-covalently asso
136 ansiently transfected with either muscarinic M3 receptors, which couple to endogenous Gq protein and
137                                Activation of M3 receptors, which have a higher coupling efficiency th
138                     Coimmunoprecipitation of m3 receptors with Gbetagamma, tubulin, and clathrin from
139 nd FAK elicited by stimulation of muscarinic m3 receptors with the acetylcholine analog carbachol is
140 th an EC50 of 23 nM and a partial agonist at M3-receptors with an EC50 of 3.6 nM, based in both cases
141 t of these, one was a partial agonist at the M3 receptor without measurable M2 agonism.

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top