戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1  to seed exudates of its host plant alfalfa (Medicago sativa).
2 el legume Medicago truncatula or in alfalfa (Medicago sativa).
3 ngineering PAs in the forage legume alfalfa (Medicago sativa).
4 ing symbiosis with its host legume, alfalfa (Medicago sativa).
5 ing symbiosis with its legume host, alfalfa (Medicago sativa).
6 ntrol of a constitutive promoter in alfalfa (Medicago sativa).
7 mbiotic relationship with the alfalfa plant (Medicago sativa).
8 GS1) gene have been introduced into alfalfa (Medicago sativa).
9 nt CPSase gene (CPAII) derived from alfalfa (Medicago sativa).
10 uction in pea had no such effect in alfalfa (Medicago sativa).
11 apus), and somatic embryogenesis in alfalfa (Medicago sativa).
12 e symbiosis between S. meliloti and its host Medicago sativa.
13 tablishment of symbiosis with its host plant Medicago sativa.
14 ogen fixation when they were inoculated onto Medicago sativa.
15 red to establish a successful symbiosis with Medicago sativa.
16 gen-fixing relationship with its plant host, Medicago sativa.
17 psis thaliana, Saccharomyces cerevisiae, and Medicago sativa.
18 nd symbiotically defective on the host plant Medicago sativa.
19  a nitrogen-fixing symbiosis with the legume Medicago sativa.
20 ified in the genomes of both Glycine max and Medicago sativa.
21   Overexpression of a KNOX1 gene in alfalfa (Medicago sativa), a member of the IRLC, resulted in an i
22 . truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited
23 ven by the constitutive CaMV 35S promoter in Medicago sativa (alfalfa) and Nicotiana tabacum (tobacco
24 nt host plant systems: Ncotiana benthamiana, Medicago sativa (alfalfa) and Nicotiana tabacum NT1 cell
25  between Sinorhizobium meliloti and its host Medicago sativa (alfalfa) depends on several signaling m
26         We previously showed that transgenic Medicago sativa (alfalfa) plants overexpressing microRNA
27 tween Rhizobium meliloti and its host plant, Medicago sativa (alfalfa), but the precise role of EPS i
28 soil in search of its leguminous plant host, Medicago sativa (alfalfa).
29 ng endosymbiont of leguminous plants such as Medicago sativa (alfalfa).
30 opsis thaliana, as well as its ortholog from Medicago sativa (alfalfa).
31 tering into a nitrogen-fixing symbiosis with Medicago sativa (alfalfa).
32 alcium spiking in M. truncatula and alfalfa (Medicago sativa) also uncovered the possibility of diffe
33 mmunication between the roots of two plants (Medicago sativa and Arabidopsis thaliana) and the bacter
34 bles the bacterium to invade root nodules on Medicago sativa and establish a nitrogen-fixing symbiosi
35                                     Alfalfa (Medicago sativa) and Arabidopsis were used as model syst
36 ensa), tobacco (Nicotiana tabacum), alfalfa (Medicago sativa), and soybean (Glycine max).
37 udged them to be symbiotically proficient on Medicago sativa, and concluded that LPS might not have a
38 ese findings for the development of alfalfa (Medicago sativa) as a dedicated bioenergy crop.
39 plants such as pea (Pisum sativum), alfalfa (Medicago sativa), barrel medic (Medicago truncatula), an
40  lignin levels in the forage legume alfalfa (Medicago sativa) by down-regulation of the monolignol bi
41 tical step during the nodulation of alfalfa (Medicago sativa) by S. meliloti.
42 ly 56-60% identities with C. microcarpa ACS, Medicago sativa chalcone synthase (CHS), and the previou
43 ryegrass (Lolium perenne) and dicot alfalfa (Medicago sativa) COMTs.
44 -2, with distinct promoters from an alfalfa (Medicago sativa cv Chief) genomic library.
45 d floral shoot apices of transgenic alfalfa (Medicago sativa cv. RegenSY).
46 zobium meliloti and its legume host alfalfa (Medicago sativa) depends on the timely expression of nod
47 ide (alfAFP) defensin isolated from seeds of Medicago sativa displays strong activity against the agr
48  these systems, such as Trifolium repens and Medicago sativa, do not contain any substantial amounts
49 abidopsis IRT1 (AtIRT1) under control of the Medicago sativa EARLY NODULIN 12B promoter in our previo
50  One eudicotyledon was found to have tricin (Medicago sativa, Fabaceae).
51                     The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has
52                  Its close relative alfalfa (Medicago sativa) is the most widely grown forage legume
53                     Growth of salt-sensitive Medicago sativa L on 171 mM NaCl led to a slight decreas
54 g vegetative and reproductive development in Medicago sativa L.
55                          Transgenic alfalfa (Medicago sativa L. cv Regen) roots carrying genes encodi
56 e that enhances root respiration in alfalfa (Medicago sativa L.) and also triggers a compensatory inc
57 elated pathways in elicitor-treated alfalfa (Medicago sativa L.) cell suspension cultures.
58                                     Lucerne (Medicago sativa L.) has been widely used in the region t
59                                     Alfalfa (Medicago sativa L.) roots contain large quantities of be
60                        Tolerance of alfalfa (Medicago sativa L.) to animal grazing varies widely with
61            The crystal structure of alfalfa (Medicago sativa L.) vestitone reductase has been determi
62  which was originally isolated from alfalfa (Medicago sativa L.), contains genes that increase compet
63  to the sixth internode in stems of alfalfa (Medicago sativa L.), preceding the deposition of lignin.
64 r associated with NaCl tolerance in alfalfa (Medicago sativa L.).
65                   Forage crops like alfalfa (Medicago sativa) lack both polyphenol oxidase and o-diph
66 le cress (Arabidopsis thaliana) and alfalfa (Medicago sativa) leads to strongly reduced lignin levels
67 -1) fresh weight) was engineered in alfalfa (Medicago sativa) leaves by constitutive expression of is
68 ositional changes in two low-lignin alfalfa (Medicago sativa) lines with antisense down-regulation of
69 lux rates by 5% to 545% in roots of alfalfa (Medicago sativa), Medicago truncatula, maize (Zea mays),
70       In this study effect of Glomus mosseae/Medicago sativa mycorrhiza on atrazine degradation was i
71 Xenopus laevis nucleolin (31%), the alfalfa (Medicago sativa) nucleolin homolog (66%), and the yeast
72               The behavior of Hg in alfalfa (Medicago sativa) plants grown under controlled condition
73                        In contrast, alfalfa (Medicago sativa) plants, which have limited numbers of p
74 aackia amurensis Rupr. & Maxim. and alfalfa (Medicago sativa), produced pseudonodules after treatment
75 long A17 small GTPase MtROP9, orthologous to Medicago sativa Rac1, via an RNA interference silencing
76 symbiosis between Sinorhizobium meliloti and Medicago sativa requires complex physiological adaptatio
77 ssion of MtPAR in the forage legume alfalfa (Medicago sativa) resulted in detectable levels of PA in
78 umol N2 (g dry weight nodule)(-1) h(-1) of a Medicago sativa-Rhizobium consortium by continuously ana
79             We have previously reported that Medicago sativa root hairs exposed to NF display sharp o
80 rates that the nodule endodermis of alfalfa (Medicago sativa) root nodules contains elevated levels o
81                                     Alfalfa (Medicago sativa) seed defensin, MsDef1, strongly inhibit
82 tial stages of symbiosis with the host plant Medicago sativa, Sinorhizobium meliloti must overcome an
83 s analysis of two alfalfa varieties, Wisfal (Medicago sativa ssp. falcata var. sativa var. Chilean),
84 parative analyses of Medicago truncatula and Medicago sativa subsp. falcata.
85 ion and confer drought tolerance in alfalfa (Medicago sativa), the most important forage legume speci
86 ene TubA1 in situ and in transgenic alfalfa (Medicago sativa) to explore its use as a probe for plant
87 ere used to construct an all-native alfalfa (Medicago sativa) transfer DNA vector that can be used fo
88 eliloti Rm1021 contributes to symbiosis with Medicago sativa under some conditions.
89 were independently downregulated in alfalfa (Medicago sativa) using antisense and/or RNA interference
90                                     Alfalfa (Medicago sativa) varieties with antibiosis-based resista
91 and thereby enhance Al tolerance in alfalfa (Medicago sativa), we produced transgenic plants using no
92 ptake and distribution of silver in alfalfa (Medicago sativa) were quantified and visualized upon hyd
93 eding a single leaf of intact Arabidopsis or Medicago sativa with 10 or 20 mM L-galactono-1,4-lactone

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。