戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (left1)

通し番号をクリックするとPubMedの該当ページを表示します
1                                              Poliota can also extend a tandem mispair, especially whe
2                                              Poliota cannot initiate synthesis on a nicked DNA substr
3                                              Poliota is highly unusual in that it incorporates nucleo
4                                              Poliota is highly unusual in that it possesses a high fi
5                                              Poliota monoubiquitination remains unchanged after cells
6                  Here, we show that although Poliota, Poleta, and Polkappa are all able to form a cov
7 er error-prone TLS polymerases (Polkappa and Poliota) after UV irradiation.
8 three DNA polymerases, Poleta, Polkappa, and Poliota, which are able to promote replication through D
9  WRN and the TLS Pols, Poleta, Polkappa, and Poliota.
10 base and that when T is the templating base, Poliota accommodates the wobble base pair better than th
11 oration opposite different template bases by Poliota, we have carried out pre-steady-state kinetic an
12                  The mode of PCNA binding by Poliota is quite unlike that in Poldelta, where multisit
13  our kinetic and structural studies show how Poliota maintains discrimination between correct and inc
14 ne, here we examine the proficiency of human Poliota and Polkappa to synthesize past stereoisomers of
15 s mediated by the sequential action of human Poliota and Polkappa, in which Poliota incorporates the
16  base with the incoming nucleotide, and (ii) Poliota can accommodate a minor-groove-adducted template
17 stal structure of human DNA polymerase iota (Poliota) has shown that it differs from all known Pols i
18                   Human DNA polymerase iota (Poliota) is a member of the Y family of DNA polymerases
19                         DNA polymerase iota (Poliota) is a member of the Y family of DNA polymerases,
20  we determine how human DNA polymerase-iota (Poliota) promotes error-free replication across 1-MeA.
21   We show here that the sequential action of Poliota and Polkappa promotes efficient and error-free s
22 suggest that an important biological role of Poliota and Polkappa is to act sequentially to carry out
23                                  The role of Poliota in lesion bypass, however, has remained unclear.
24 commodated differently in the active site of Poliota dependent upon the template base and that when T
25 ctivity, we determined ternary structures of Poliota bound to template 1-MeA and incoming dTTP or dCT
26 esis by human Pols eta, iota, or kappa, only Poliota is able to incorporate nucleotides opposite the
27 al studies, in the Poliota/Polkappa pathway, Poliota inserts a nucleotide (nt) opposite 3-dMeA and Po
28 dicate that in the Poliota/Poltheta pathway, Poliota would carry out nucleotide insertion opposite 1-
29 is indispensable for TLS mediated by Poleta, Poliota, and Polkappa but is not required for TLS by Pol
30 ispensable scaffolding component for Poleta, Poliota, and Polkappa, which function in TLS in highly s
31          The human Y-family DNA polymerases, Poliota, Poleta, and Polkappa, function in promoting rep
32 ming Hoogsteen base pair with the T residue, Poliota would carry out TLS opposite 1-MeA, the ability
33                            We show here that Poliota incorporates a C opposite this adduct with nearl
34  Steady state kinetic analyses indicate that Poliota is 100 fold more efficient in incorporating the
35 Steady-state kinetic analyses indicated that Poliota and Poltheta insert the correct nt T opposite 3-
36 te bases, we considered the possibility that Poliota differs from other DNA polymerases in not being
37                            Here we show that Poliota interacts with PCNA via only one of its conserve
38 As inferred from biochemical studies, in the Poliota/Polkappa pathway, Poliota inserts a nucleotide (
39 Our biochemical studies indicate that in the Poliota/Poltheta pathway, Poliota would carry out nucleo
40 via three different pathways, dependent upon Poliota/Polkappa, Poltheta, and Polzeta.
41 e validity of this idea, we examined whether Poliota could incorporate nucleotides opposite the gamma
42  polymerases (Pols) iota and kappa, in which Poliota incorporates either pyrimidine opposite gamma-HO
43 nthesis through the HNE-dG adducts, in which Poliota incorporates the nucleotide opposite the lesion
44 tion of human Poliota and Polkappa, in which Poliota incorporates the nucleotide opposite the lesion

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。