戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 ic bacteria (e.g., Staphylococcus aureus and Pseudomonas aeruginosa).
2 positive Bacillus subtilis and Gram-negative Pseudomonas aeruginosa.
3 natural bispecific IgG1 candidate, targeting Pseudomonas aeruginosa.
4 ctamases, but is considered inactive against Pseudomonas aeruginosa.
5 duced and expressed in the outer membrane of Pseudomonas aeruginosa.
6  inhibits QS in opportunistic human pathogen Pseudomonas aeruginosa.
7  (ETA) is the most toxic virulence factor of Pseudomonas aeruginosa.
8 Paulo MBL (SPM-1) from beta-lactam-resistant Pseudomonas aeruginosa.
9 ic cells of the opportunistic human pathogen Pseudomonas aeruginosa.
10 ulence factors in the opportunistic pathogen Pseudomonas aeruginosa.
11 amma agonists attenuate biofilm formation by Pseudomonas aeruginosa.
12 ross some bacteria including Vibrio spp. and Pseudomonas aeruginosa.
13 omising therapeutic antibody targets against Pseudomonas aeruginosa.
14  ceftazidime-resistant Enterobacteriaceae or Pseudomonas aeruginosa.
15 jugation, and maintained in K pneumoniae and Pseudomonas aeruginosa.
16 MDR) gram-negative bacteria (GNB), including Pseudomonas aeruginosa.
17 fection assays with the pathogenic bacterium Pseudomonas aeruginosa.
18 nsors to trigger acute virulence programs in Pseudomonas aeruginosa.
19 olonisation by respiratory pathogens such as Pseudomonas aeruginosa.
20 ould be maintained when tested on pathogenic Pseudomonas aeruginosa.
21 ignature analysis for the bacterial pathogen Pseudomonas aeruginosa.
22 nescent strains of Staphylococcus aureus and Pseudomonas aeruginosa.
23 abolite by the opportunistic human pathogen, Pseudomonas aeruginosa.
24 e-associated pyochelin siderophore system in Pseudomonas aeruginosa.
25 m antibiotics in many Enterobacteriaceae and Pseudomonas aeruginosa.
26 e mass spectra of membrane grown biofilms of Pseudomonas aeruginosa.
27 le and cultures of Aspergillus fumigatus and Pseudomonas aeruginosa.
28 h a unique species-specific activity against Pseudomonas aeruginosa.
29            Staphylococcus aureus (12.9%) and Pseudomonas aeruginosa (11.5%) were the most common path
30 s (MRSA) and Candida albicans) and standard (Pseudomonas aeruginosa 15692) pathogens.
31  for the majority of Gram negative bacteria (Pseudomonas aeruginosa, 16-32 mug/mL, Klebsiella pneumon
32 broth microdilution (BMD) for 99 isolates of Pseudomonas aeruginosa, 26 Acinetobacter baumannii isola
33 (n=355) were Klebsiella pneumoniae (37%) and Pseudomonas aeruginosa (30%); 28% were ceftazidime-non-s
34 tive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa (99.3 +/- 1.9% and 88.5 +/- 3.3%
35                        We used the bacterium Pseudomonas aeruginosa, a common cause of hospital-acqui
36 at are notoriously problematic in hospitals: Pseudomonas aeruginosa, Acinetobacter baumannii, and Sta
37 lostridium difficile, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, carbape
38                         Carbapenem-resistant Pseudomonas aeruginosa, Acinetobacter spp., and Enteroba
39                                              Pseudomonas aeruginosa acquires extracellular heme via t
40 by the Gram-negative opportunistic pathogen, Pseudomonas aeruginosa Activation of phospholipase activ
41                                              Pseudomonas aeruginosa adaptation to survive in the host
42  healthy mouse corneas becomes vulnerable to Pseudomonas aeruginosa adhesion if it lacks the innate d
43 n was spliced into a poly-HAMP unit from the Pseudomonas aeruginosa Aer2 receptor.
44 s this question in the pathogenic bacterium, Pseudomonas aeruginosa Although public goods producers w
45 gainst experimental endocarditis (EE) due to Pseudomonas aeruginosa, an archetype of difficult-to-tre
46 non-glucose-fermenting Gram-negative bacilli Pseudomonas aeruginosa and Acinetobacter baumannii are i
47 bial performance against two MDR isolates of Pseudomonas aeruginosa and Acinetobacter baumannii throu
48 ing Gram-negative bacilli (CPNFs), including Pseudomonas aeruginosa and Acinetobacter baumannii, is n
49 erved against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii.
50  and model drug by LPS from F. tularensis vs Pseudomonas aeruginosa and by F. tularensis live bacteri
51 epresented species in the tumors followed by Pseudomonas aeruginosa and Campylobacter sp.
52                       Structures of Lnt from Pseudomonas aeruginosa and Escherichia coli have been so
53 coccus pyogenes) and gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli) over time t
54 ic strains including Neisseria meningitidis, Pseudomonas aeruginosa and Escherichia coli.
55 n of biofilms formed by the mucoid strain of Pseudomonas aeruginosa and investigated the commonality
56 is synthesized by the opportunistic pathogen Pseudomonas aeruginosa and is an important biofilm const
57 ed reservoirs, including electronic faucets (Pseudomonas aeruginosa and Legionella), decorative water
58 as Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa and Salmonella Typhimurium The ge
59 ocystitis; Coagulase negative Staphylococci, Pseudomonas aeruginosa and Staphylococcus aureus in kera
60 PPH assay and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus was ass
61 rial activity of raw rapeseed honeys against Pseudomonas aeruginosa and Staphylococcus aureus, with a
62 extran-coated nanoceria was examined against Pseudomonas aeruginosa and Staphylococcus epidermidis by
63 red by new data from 28 clinical isolates of Pseudomonas aeruginosa and strains evolved in laboratory
64 ough horizontal gene transfer by the species Pseudomonas aeruginosa and subsequently abundant P. aeru
65 opportunistic pathogens, namely the bacteria Pseudomonas aeruginosa and the fungus Aspergillus fumiga
66 obal sRNA interactions with their targets in Pseudomonas aeruginosa and verified the method with a kn
67  Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa) and in vitro anti-proliferative
68 ith 294 isolates of Enterobacteriaceae spp., Pseudomonas aeruginosa, and Acinetobacter baumannii chos
69  (Staphylococcus aureus, Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii).
70 nslational modification in Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis.
71 apenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa, and carbapenem-resistant and thi
72 lococcus epidermidis, Enterococcus faecalis, Pseudomonas aeruginosa, and Klebsiella pneumoniae, which
73 ria-Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and mycobacteria.
74 c bacterial strains: Legionella pneumophila, Pseudomonas aeruginosa, and Salmonella typhimurium.
75 way infections by the opportunistic pathogen Pseudomonas aeruginosa are a major cause of mortality in
76 he fungus Candida albicans and the bacterium Pseudomonas aeruginosa are coisolated in the context of
77  Staphylococci, Streptococcus pneumoniae and Pseudomonas aeruginosa are the leading isolates in ocula
78                                        Using Pseudomonas aeruginosa as a model system, the authors sh
79  to Escherichia coli, Klebsiella species, or Pseudomonas aeruginosa at 130 VHA facilities from Januar
80  between the two domains and is able to kill Pseudomonas aeruginosa at sub-micromolar concentrations.
81 the study was to assess the applicability of Pseudomonas aeruginosa ATCC9027 and its validated biolum
82 olate bond in an engineered copper centre in Pseudomonas aeruginosa azurin by rational design of the
83 li, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, Bacillus subtilis, and Staphyloc
84 l toxic epidermal necrolysis with concurrent Pseudomonas aeruginosa bacteraemia.
85 olymicrobial, with Staphylococcus aureus and Pseudomonas aeruginosa being the two most commonly isola
86  plant metabolites called flavonoids inhibit Pseudomonas aeruginosa biofilm formation by an unknown m
87 rophage migration inhibitory factor enhances Pseudomonas aeruginosa biofilm formation, potentially co
88                                              Pseudomonas aeruginosa biofilm infections are difficult
89 ion yellow 11), which targets amyloid in the Pseudomonas aeruginosa biofilm matrix through a diversit
90 ial transcriptome map of the mature in vitro Pseudomonas aeruginosa biofilm model, revealing contempo
91        This paper studies the formation of a Pseudomonas aeruginosa biofilm on a Papyex graphite (PA)
92       We established a new approach to study Pseudomonas aeruginosa biofilm susceptibility on biotic
93 d healing, wild-type mice were infected with Pseudomonas aeruginosa biofilms and, akin to Nod2(-/-) m
94 alize protein and metal distributions within Pseudomonas aeruginosa biofilms using imaging mass spect
95 on interact to shape competitive dynamics in Pseudomonas aeruginosa biofilms.
96                                    Moreover, Pseudomonas aeruginosa BioH is more highly expressed tha
97 ated the best antibacterial activity against Pseudomonas aeruginosa both in vitro and in vivo for tet
98           We describe for the first time how Pseudomonas aeruginosa can utilize human recombinant MIF
99          The N-acetylglucosaminidase NagZ of Pseudomonas aeruginosa catalyzes the first cytoplasmic s
100                                              Pseudomonas aeruginosa causes hospital-acquired pneumoni
101  that enables cross-species interactions, as Pseudomonas aeruginosa cells also become attracted to th
102 ng approximately 90% of Escherichia coli and Pseudomonas aeruginosa cells within 90-120 and 5-30 min,
103 face glycosylation is modulated by IL-1R and Pseudomonas aeruginosa challenge but is insufficient for
104 vations link respiratory virus infection and Pseudomonas aeruginosa colonization in chronic lung dise
105 ophilia and mucin production associated with Pseudomonas aeruginosa colonization, which is associated
106 we report the crystal structure of LspA from Pseudomonas aeruginosa complexed with the antimicrobial
107 ng of a genetically detoxified exotoxin A of Pseudomonas aeruginosa covalently linked to Shigella fle
108 for the detection of carbapenemase-producing Pseudomonas aeruginosa (CP-PA) and carbapenemase-produci
109 ne conductance regulator (CFTR) that reduces Pseudomonas aeruginosa culture positivity in CF patients
110                                              Pseudomonas aeruginosa defies eradication by antibiotics
111 Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hour
112  actively synthesized proteins in nongrowing Pseudomonas aeruginosa, discovering a regulator whose in
113 reted components by the pathogenic bacterium Pseudomonas aeruginosa during growth on a protein substr
114 e rate by human neutrophil elastase (NE) and Pseudomonas aeruginosa elastase (PAE) by different mecha
115         The nefarious Gram-negative pathogen Pseudomonas aeruginosa encodes eleven LTs.
116 ysts of intracellular phenazine reduction in Pseudomonas aeruginosa Enzymatic assays in cell-free lys
117 thal toxin, diphtheria toxin, cholera toxin, Pseudomonas aeruginosa exotoxin A, Botulinum neurotoxin,
118        Strains of the opportunistic pathogen Pseudomonas aeruginosa express one of five different typ
119 large, non-Nocardia, or classically invasive Pseudomonas aeruginosa; for patients with low baseline v
120                   The opportunistic pathogen Pseudomonas aeruginosa forms antimicrobial resistant bio
121 ic coinfections of Staphylococcus aureus and Pseudomonas aeruginosa frequently fail to respond to ant
122 f Enterobacteriaceae, Acinetobacter spp, and Pseudomonas aeruginosa from 18 698 inpatients and 2923 h
123 ce variant of PTEN, were unable to eradicate Pseudomonas aeruginosa from the airways and could not ge
124 A) plays a critical role in the clearance of Pseudomonas aeruginosa from the lung.
125 n B addition engendered Escherichia coli and Pseudomonas aeruginosa Gram-negative activity MIC's of 4
126 r interface and the active sites can abolish Pseudomonas aeruginosa growth in a defined medium with m
127 t of EGCG against the opportunistic pathogen Pseudomonas aeruginosa has been shown to involve disrupt
128                   The Gram-negative pathogen Pseudomonas aeruginosa has three T6SSs involved in colon
129 nization with other pathogens, in particular Pseudomonas aeruginosa Here, we demonstrate that CF mice
130                                          For Pseudomonas aeruginosa, human monoclonal antibodies (mAb
131 )F-fluoromaltotriose was also able to detect Pseudomonas aeruginosa in a clinically relevant mouse mo
132 ge therapy for acute pneumonia caused by MDR Pseudomonas aeruginosa in a mouse model.
133 de Staphylococci, Streptococcus pyogenes and Pseudomonas aeruginosa in blepharitis; Staphylococci, St
134 mune responses in non-neural tissues against Pseudomonas aeruginosa in Caenorhabditis elegans.
135 apid, redox-active biomarker for identifying Pseudomonas aeruginosa in clinical infections.
136 had lower sensitivities for the detection of Pseudomonas aeruginosa in comparison to the analogous 7-
137 red to those to the well-studied CF pathogen Pseudomonas aeruginosa In parallel, mice were also infec
138 strain of Escherichia coli to sense and kill Pseudomonas aeruginosa in vitro.
139  fabricated an immunosensor for detection of Pseudomonas aeruginosa in water.
140 utrophil synthesis of LTB4 in the context of Pseudomonas aeruginosa-induced neutrophil transepithelia
141  induced in mouse macrophages in response to Pseudomonas aeruginosa infection both in vivo and by iso
142                             LPS treatment or Pseudomonas aeruginosa infection induces miR-301b expres
143                                              Pseudomonas aeruginosa infection liberates transmissible
144 tactic gradients, and migrate in response to Pseudomonas aeruginosa infection of primary ALI barriers
145 leus, histamine blocker use, and respiratory Pseudomonas aeruginosa infection were associated with lo
146 p=0.037) when adjusted for sex, BMI, chronic Pseudomonas aeruginosa infection, FEV1/FVC (forced vital
147  the eye from pathogenic Candida albicans or Pseudomonas aeruginosa infection.
148 t poly(I:C), improved the host response to a Pseudomonas aeruginosa infection.
149 rse outcomes, particularly in the setting of Pseudomonas aeruginosa infection.
150  (KO) mice with aerosolized LPS (100 mug) or Pseudomonas aeruginosa infection.
151  resistance during multidrug resistant (MDR)-Pseudomonas aeruginosa infections are limited.
152 rventions to treat multidrug-resistant (MDR) Pseudomonas aeruginosa infections are severely limited a
153                                    Recurrent Pseudomonas aeruginosa infections coupled with robust, d
154                                              Pseudomonas aeruginosa is a Gram-negative bacterial path
155                                              Pseudomonas aeruginosa is a Gram-negative opportunistic
156                                              Pseudomonas aeruginosa is a Gram-negative, opportunistic
157                                              Pseudomonas aeruginosa is a leading cause of hospital-ac
158                                              Pseudomonas aeruginosa is a leading cause of nosocomial
159                   The opportunistic pathogen Pseudomonas aeruginosa is a major cause of sepsis in sev
160                                              Pseudomonas aeruginosa is a major cause of severe infect
161                                              Pseudomonas aeruginosa is a pathogenic gram-negative org
162                                              Pseudomonas aeruginosa is a significant contributor to r
163                                              Pseudomonas aeruginosa is a ubiquitous environmental org
164                                              Pseudomonas aeruginosa is among the leading causes of se
165                                              Pseudomonas aeruginosa is an important opportunistic hum
166                                              Pseudomonas aeruginosa is an opportunistic and frequentl
167                                              Pseudomonas aeruginosa is an opportunistic pathogen that
168                     The ubiquitous bacterium Pseudomonas aeruginosa is an opportunistic pathogen that
169 and characterization of 20 muropeptides from Pseudomonas aeruginosa is described.
170 nsporter FpvAI in the opportunistic pathogen Pseudomonas aeruginosa is hijacked to translocate the ba
171                    The pathogenic profile of Pseudomonas aeruginosa is related to its ability to secr
172  demonstrate that the Gram-negative pathogen Pseudomonas aeruginosa is susceptible to reactive oxygen
173 -GMP signaling in the opportunistic pathogen Pseudomonas aeruginosa is the transcription regulator Fl
174  resolution, we show that granule genesis in Pseudomonas aeruginosa is tightly organized under nitrog
175 ation with bacterial pathogens, particularly Pseudomonas aeruginosa, is the primary cause of morbidit
176  the time to detection (TTD) and growth of 2 Pseudomonas aeruginosa isolates in the presence of clini
177 robacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa isolates.
178 ecretion system effector found in 90% of the Pseudomonas aeruginosa isolates.
179                                          For Pseudomonas aeruginosa, it has long been known that intr
180  accounts for biofilm-mediated resistance to Pseudomonas aeruginosa killing.
181 ria are Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Klebsiella pneumonia.
182 tis; Staphylococci, Streptococus pneumoniae, Pseudomonas aeruginosa, Klebsiella pneumoniae and Escher
183                                              Pseudomonas aeruginosa lacking the Pseudomonas prolyl-hy
184 ghput to sequence approximately 400 clinical Pseudomonas aeruginosa libraries and demonstrate excelle
185 aling activity of Hfq from Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Bacillus
186            Infections by multidrug-resistant Pseudomonas aeruginosa (MDRPa) are an important cause of
187  built here an intact atomistic model of the Pseudomonas aeruginosa MexAB-OprM pump in a Gram-negativ
188              Here we defined PF orthologs in Pseudomonas aeruginosa, Moraxella catarrhalis, and Staph
189                                              Pseudomonas aeruginosa move across surfaces by using mul
190                                            A Pseudomonas aeruginosa mutant lacking all three known ir
191 ) from E. coli B, E. coli 056, E. coli 0111, Pseudomonas aeruginosa NBRC 13743 and Hafnia alvei 1185.
192 nfections such as invasive aspergillosis and Pseudomonas aeruginosa occurred during hospitalization.
193                                    Growth of Pseudomonas aeruginosa on spermine requires a functional
194                                           In Pseudomonas aeruginosa, one of the best studied models f
195 fluorescent pseudomonads, such as pathogenic Pseudomonas aeruginosa or plant growth-promoting Pseudom
196 receptor, was induced by infection with live Pseudomonas aeruginosa or treatment of cells with its su
197 ne reproductive pathogens (Escherichia coli, Pseudomonas aeruginosa, or Klebsiella pneumoniae) isolat
198 trains including Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus a
199 n-resistant Sthaphylococcus aureus, MRSA and Pseudomonas aeruginosa, P. aeruginosa) were analyzed in
200                                              Pseudomonas aeruginosa (PA) is a ubiquitous microbe.
201                                              Pseudomonas aeruginosa (PA) remains an important pathoge
202 ycobacterium marinum (Mm) (a model for Mtb), Pseudomonas aeruginosa (Pa), Legionella pneumophila (Lp)
203                                              Pseudomonas aeruginosa(Pa) was present in CF sputum in 1
204 dox-active phenazine metabolites produced by Pseudomonas aeruginosa PA14 colony biofilms.
205             Here, we show that the bacterium Pseudomonas aeruginosa PA14 uses the cell-cell communica
206                  In the pathogenic bacterium Pseudomonas aeruginosa PA14, antibiotics called phenazin
207 e, we identified a tRNA methyltransferase in Pseudomonas aeruginosa PA14, trmJ, which confers resista
208 nd respiration in the opportunistic pathogen Pseudomonas aeruginosa PA14.
209 he type I-F CRISPR adaptive immune system in Pseudomonas aeruginosa (PA14) consists of two CRISPR loc
210 g protein (PumA) of the multi-drug resistant Pseudomonas aeruginosa PA7 strain.
211                             The responses of Pseudomonas aeruginosa PAO1 and PA14 to a hexadecane-wat
212                         The textile MFC used Pseudomonas aeruginosa PAO1 as a biocatalyst to generate
213 receptors and a single chemosensory pathway, Pseudomonas aeruginosa PAO1 has a much more complex chem
214 aves B-band LPS (O-specific antigen, OSA) of Pseudomonas aeruginosa PAO1.
215 tailed bacterial viruses, or phages, such as Pseudomonas aeruginosa phage varphiKZ, have long genomes
216 Phis are hyperinflammatory and have impaired Pseudomonas aeruginosa phagocytosis, phenocopying CF MPh
217                                              Pseudomonas aeruginosa populations undergo a characteris
218 mp MexGHI-OpmD in the opportunistic pathogen Pseudomonas aeruginosa Previous studies of P. aeruginosa
219                   The opportunistic pathogen Pseudomonas aeruginosa produces colorful redox-active me
220                                              Pseudomonas aeruginosa produces increased levels of algi
221                   The opportunistic pathogen Pseudomonas aeruginosa produces the cationic exopolysacc
222                This cascade consists of four Pseudomonas aeruginosa protein regulators (ExsADCE) that
223 e, the authors show that two DMAbs targeting Pseudomonas aeruginosa proteins confer protection agains
224 ontaining phosphodiesterase domains from the Pseudomonas aeruginosa proteins PA3825 (PA3825(EAL)) and
225       The outer membrane protein H (OprH) of Pseudomonas aeruginosa provides an increased stability t
226 arothermophilus) and gram-negative bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmone
227 al factors governing this critical period in Pseudomonas aeruginosa pulmonary pathogenesis when trans
228 y identified NB predicted to be specific for Pseudomonas aeruginosa (pyocin Sn) was produced and show
229                                Analysis of a Pseudomonas aeruginosa quiC1 gene knock-out demonstrates
230 -heptyl-4-hydroxyquinoline-N-oxide (HQNO), a Pseudomonas aeruginosa quorum-sensing-regulated low-mole
231 Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) relative to controls.
232 Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa-reported here underscores the bro
233 hicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, respectively, in catheter-associ
234 tunistic pathogens Aspergillus fumigatus and Pseudomonas aeruginosa, respectively.
235  interactions with the respiratory pathogens Pseudomonas aeruginosa, respiratory syncytial virus and
236  co-infection of murine surgical wounds with Pseudomonas aeruginosa results in conversion of approxim
237            Exposure to a bacterial pathogen (Pseudomonas aeruginosa) results in elevated removal of u
238 inding sites of the RNase E component of the Pseudomonas aeruginosa RNA degradosome, occluding them f
239  EF-Tu from the clinically relevant pathogen Pseudomonas aeruginosa shares over 84% sequence identity
240                    Our functional studies in Pseudomonas aeruginosa show that its two-subunit PC is i
241 posed to include Acinetobacter baumannii and Pseudomonas aeruginosa (SNAP and POP studies).
242                            Here we show that Pseudomonas aeruginosa specific bacteriocins, known as p
243 ith Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus (including
244 netobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and coagu
245 ebsiella pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Vi
246 me-scale metabolic network reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expan
247 sted the individual oxidants on the virulent Pseudomonas aeruginosa strain PA14.
248 and metabolism (oprB, gltK, gtrS and glk) in Pseudomonas aeruginosa, strain PAO1.
249     We demonstrate that the pathogenicity of Pseudomonas aeruginosa strains derived from acute clinic
250 ix mares were inoculated with lux-engineered Pseudomonas aeruginosa strains isolated from equine uter
251   We used a collection of well characterized Pseudomonas aeruginosa strains, featuring distinct antib
252 N prevented death due to pneumonia caused by Pseudomonas aeruginosa, Streptococcus pneumoniae, and As
253  to a burn infected with multidrug-resistant Pseudomonas aeruginosa substantially decreased bacterial
254 ative organisms with higher activity towards Pseudomonas aeruginosa than the naturally-occurring AMP
255                     In other genomes such as Pseudomonas aeruginosa the bioH gene is within a biotin
256  faucets were most frequently colonized, and Pseudomonas aeruginosa the predominant organism.
257 olution X-ray crystal structure of FliD from Pseudomonas aeruginosa, the first high-resolution struct
258                                           In Pseudomonas aeruginosa, the Pil-Chp system regulates T4P
259  bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa These new structures, along with
260  ubiquitous and opportunistic human pathogen Pseudomonas aeruginosa This bacterium is frequently adop
261 a chemotaxis-regulating methyltransferase in Pseudomonas aeruginosa This cocrystal structure, togethe
262                             For the pathogen Pseudomonas aeruginosa, this evasion appears to be trigg
263 trate a 5-log increase in the sensitivity of Pseudomonas aeruginosa to ciprofloxacin.
264 s by RNA-Seq to characterize the response of Pseudomonas aeruginosa to external 0.5 mm CuSO4, a condi
265              Here, we experimentally evolved Pseudomonas aeruginosa to six 2-drug sequences.
266 tudying the sensitivities of a ohr mutant of Pseudomonas aeruginosa toward different hydroperoxides.
267 ulence factors for many pathogens, including Pseudomonas aeruginosa Transcription of the major pilin
268                                              Pseudomonas aeruginosa translocators PopB and PopD inser
269                                          The Pseudomonas aeruginosa type III secretion system deliver
270 lus also are dispensable for activation of a Pseudomonas aeruginosa type VI secretion system (T6SS).
271                The adaptive immune system in Pseudomonas aeruginosa (type I-F) relies on a 350 kDa CR
272  and gene essentiality in the model organism Pseudomonas aeruginosa UCBPP-PA14.
273 ion of the peptide siderophore pyoverdine by Pseudomonas aeruginosa, under different nutrient-limitin
274  activity developed either an E. faecalis or Pseudomonas aeruginosa urinary tract infection, suggesti
275                             Bacteria such as Pseudomonas aeruginosa use type IV pili to move across s
276 la via trophic transfer from bacterial prey (Pseudomonas aeruginosa) versus direct uptake from growth
277 ce in the opportunistic pathogenic bacterium Pseudomonas aeruginosa via an unknown pathway.
278     The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate c
279  augments host defense in sepsis and reduces Pseudomonas aeruginosa virulence through quorum sensing
280                                           In Pseudomonas aeruginosa, virulence is induced with releas
281 nd mediators produced by pyocyanin-producing Pseudomonas aeruginosa (WACC 91) culture.
282  human airway epithelial cells infected with Pseudomonas aeruginosa was applied to lung fibroblasts a
283  Aspergillus flavus and meropenem due to the Pseudomonas aeruginosa was initiated, the former necessi
284 ior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated.
285  corneal epithelial barrier function against Pseudomonas aeruginosa was MyD88-dependent.
286                                              Pseudomonas aeruginosa was the only Gram negative bacter
287 ion by other uropathogens (Escherichia coli, Pseudomonas aeruginosa) was also explored, and thioridaz
288 compared with that of its ortholog LecA from Pseudomonas aeruginosa We also investigated the utility
289 ococcus faecalis, Klebsiella pneumoniae, and Pseudomonas aeruginosa We therefore conclude that the un
290       Using PrrF1, an iron-regulated sRNA in Pseudomonas aeruginosa, we demonstrated that direct regu
291 Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were tested in triplicate using t
292 Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa were the most common isolates.
293 old the minimal inhibitory concentration for Pseudomonas aeruginosa) were compared between the two gr
294 me organisms, such as Klebsiella species and Pseudomonas aeruginosa, were lower in oncology than in n
295  carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa, which are difficult to treat.
296 vae are highly susceptible to infection with Pseudomonas aeruginosa, which can be almost fully rescue
297  patients infected with carbapenem-resistant Pseudomonas aeruginosa who were treated with ceftolozane
298 tified here melanogenic clinical isolates of Pseudomonas aeruginosa with large chromosomal deletions
299 erimentally evolved replicate populations of Pseudomonas aeruginosa with or without a community of th
300 ride, showed efficient biofilm inhibition of Pseudomonas aeruginosa without impairing its growth.

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top