戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 c bacteria Rhodobacter sphaeroides 2.4.1 and Rhodopseudomonas acidophila 10050.
2 in Rhodobacter sphaeroides), lamellar (as in Rhodopseudomonas acidophila and Phaeospirillum molischia
3 e B800-B850 complex and B800-B820 complex of Rhodopseudomonas acidophila are 7+/-0.5 ps and 6+/-0.5 p
4 rotein light harvesting complex 2 (LH2) from Rhodopseudomonas acidophila at the single-protein level.
5 tructures of LH-II from Rs. molischianum and Rhodopseudomonas acidophila furnish a complete model of
6 ht-harvesting complex of the purple bacteria Rhodopseudomonas acidophila strain 10050 at a maximal re
7 brane light-harvesting complex II (LH2) from Rhodopseudomonas acidophila strain 10050 has been refine
8 the peripheral light-harvesting complex from Rhodopseudomonas acidophila strain 10050 reveals a membr
9 the intact light-harvesting complex LH2 from Rhodopseudomonas acidophila were bound to mica surfaces
10  Single light-harvesting complexes LH-2 from Rhodopseudomonas acidophila were immobilized on various
11                              In the LH2 from Rhodopseudomonas acidophila, the equivalent part of the
12 ly obtained for the related LH2 complex from Rhodopseudomonas acidophila.
13 atility that is a defining characteristic of Rhodopseudomonas, different ecotypes have evolved to tak
14                          The bacterial genus Rhodopseudomonas is comprised of photosynthetic bacteria
15 re is considerable genotypic diversity among Rhodopseudomonas isolates.
16 acteria, including Rhodobacter, Methylibium, Rhodopseudomonas, Methyloversatilis, Caldilinea, Thiobac
17                         The cbb(I) region of Rhodopseudomonas palustris (Rp. palustris) contains the
18 th of Rhodospirillum rubrum (Rs. rubrum) and Rhodopseudomonas palustris (Rp. palustris) RubisCO-defic
19     The protein acetyltransferase (Pat) from Rhodopseudomonas palustris (RpPat) inactivates AMP-formi
20 lation efficiency over a range of genes from Rhodopseudomonas palustris and E. coli was achieved usin
21 ranscriptional activator, similar to AadR of Rhodopseudomonas palustris and FixK proteins of rhizobia
22 of p-coumarate by the phototrophic bacterium Rhodopseudomonas palustris and found that it also follow
23 wo related LuxI homologs, RpaI and BtaI from Rhodopseudomonas palustris and photosynthetic stem-nodul
24                                              Rhodopseudomonas palustris assimilates CO2 by the Calvin
25 ome BphP1 and its natural partner PpsR2 from Rhodopseudomonas palustris bacteria.
26 ucturally characterize enzymes of the GRM of Rhodopseudomonas palustris BisB18 and demonstrate their
27 was purified from the phototrophic bacterium Rhodopseudomonas palustris by sequential Q-Sepharose, ph
28                       The genome sequence of Rhodopseudomonas palustris CGA009 revealed a surprising
29                                           In Rhodopseudomonas palustris CGA010, the LysR type regulat
30 rowing cells of the photosynthetic bacterium Rhodopseudomonas palustris continue to metabolize acetat
31                             Reduced (Fe(II)) Rhodopseudomonas palustris cytochrome c' (Cyt c') is mor
32 gy transfer kinetics during the refolding of Rhodopseudomonas palustris cytochrome c' reveals dramati
33 me loop formation for iso-1-cytochrome c and Rhodopseudomonas palustris cytochrome c', shows that fol
34 plexes has been investigated in membranes of Rhodopseudomonas palustris grown under high- and low-lig
35 bolic fluxes in the photosynthetic bacterium Rhodopseudomonas palustris grown with (13)C-labeled acet
36                                              Rhodopseudomonas palustris grows photoheterotrophically
37  4-hydroxybenzoate (4-HBA) to benzoyl-CoA by Rhodopseudomonas palustris have been identified.
38 totrophic bacteria Rhodospirillum rubrum and Rhodopseudomonas palustris In vivo metabolite analysis o
39              Quorum sensing in the bacterium Rhodopseudomonas palustris involves the RpaI signal synt
40                                              Rhodopseudomonas palustris is a purple, facultatively ph
41                                              Rhodopseudomonas palustris is among the most metabolical
42                 The photosynthetic bacterium Rhodopseudomonas palustris is one of just a few prokaryo
43                                              Rhodopseudomonas palustris is unique among characterized
44                         The photoheterotroph Rhodopseudomonas palustris is unusual in that it produce
45                                              Rhodopseudomonas palustris metabolizes aromatic compound
46 nspect, based on benchmarking results from a Rhodopseudomonas palustris proteomics dataset.
47 ight harvesting 1 (RC-LH1) core complex from Rhodopseudomonas palustris shows the reaction center sur
48                                              Rhodopseudomonas palustris strain JSC-3b isolated from a
49                                              Rhodopseudomonas palustris strain RCB100 degrades 3-chlo
50  show that the iron-oxidizing photoautotroph Rhodopseudomonas palustris TIE-1 accepts electrons from
51 r the phototrophic Fe(II)-oxidizing bacteria Rhodopseudomonas palustris TIE-1 and the Fe(III)-reducin
52           Here we report the discovery, with Rhodopseudomonas palustris TIE-1 as a model organism, of
53                         The purple bacterium Rhodopseudomonas palustris TIE-1 expresses multiple smal
54                                              Rhodopseudomonas palustris TIE-1 is a gram-negative bact
55  the phototrophic Fe(II)-oxidizing bacterium Rhodopseudomonas palustris TIE-1 oxidizes magnetite (Fe3
56 eport the physiological study of a mutant in Rhodopseudomonas palustris TIE-1 that is unable to produ
57                                 Here, we use Rhodopseudomonas palustris TIE-1 to identify factors tha
58 trophic) growth by the alpha-proteobacterium Rhodopseudomonas palustris TIE-1.
59 es of the model hopanoid-producing bacterium Rhodopseudomonas palustris TIE-1.
60 denosylmethionine (SAM) methyltransfase from Rhodopseudomonas palustris to remove arsenic from contam
61                                          The Rhodopseudomonas palustris transcriptional regulator Rpa
62 re we show that the photosynthetic bacterium Rhodopseudomonas palustris uses an acyl-HSL synthase to
63         Heterologous expression of arsM from Rhodopseudomonas palustris was shown to confer As(III) r
64 nd RpBphP3 from the photosynthetic bacterium Rhodopseudomonas palustris work in tandem to modulate sy
65 trogenase, including Azotobacter vinelandii, Rhodopseudomonas palustris, and Methanosarcina barkeri.
66 totacticum, Novosphingobium aromaticivorans, Rhodopseudomonas palustris, and Thermus thermophilus.
67 ere, we developed the anoxygenic phototroph, Rhodopseudomonas palustris, as a biocatalyst capable of
68                            This enzyme, from Rhodopseudomonas palustris, assembles as a unique hexame
69       In the purple photosynthetic bacterium Rhodopseudomonas palustris, at least 10 AMP-forming acyl
70  enzyme of anaerobic benzoate degradation by Rhodopseudomonas palustris, benzoyl coenzyme A (CoA) red
71 s in the anoxygenic photosynthetic bacterium Rhodopseudomonas palustris, designated regulatory protei
72      CYP199A2, a cytochrome P450 enzyme from Rhodopseudomonas palustris, oxidatively demethylates 4-m
73 ssion of the cbb(I) CO(2) fixation operon of Rhodopseudomonas palustris, possibly in response to a re
74  purple photosynthetic alpha-proteobacterium Rhodopseudomonas palustris, two protein acetyltransferas
75 rmentative Escherichia coli and phototrophic Rhodopseudomonas palustris.
76 pounds, using the purple nonsulfur bacterium Rhodopseudomonas palustris.
77  phototrophic growth by the purple bacterium Rhodopseudomonas palustris.
78 nd meta-hydroxybenzoate, was investigated in Rhodopseudomonas palustris.
79 rylation and other major metabolic traits in Rhodopseudomonas palustris.
80 ass II c-type cytochrome, cytochrome c' from Rhodopseudomonas palustris.
81 as part of an interactome mapping project in Rhodopseudomonas palustris.
82  in two strains of the anoxygenic phototroph Rhodopseudomonas palustris.
83 he wild-type light harvesting 2 complexes of Rhodopseudomonas palustris.
84 he nonsulfur purple photosynthetic bacterium Rhodopseudomonas palustris.
85 e nonsulfur anoxygenic phototropic bacterium Rhodopseudomonas palustris.
86 ters in Escherichia coli and nitrogenases in Rhodopseudomonas palustris.
87  on a complex ribosomal protein mixture from Rhodopseudomonas palustris.
88 om digested ribosomal proteins isolated from Rhodopseudomonas palustris.
89 radation by the photoheterotrophic bacterium Rhodopseudomonas palustris.
90 een described for the phototrophic bacterium Rhodopseudomonas palustris.
91 d compounds from the phototrophic bacterium, Rhodopseudomonas palustris.
92 nd sequenced from the phototrophic bacterium Rhodopseudomonas palustris.
93 nt-protein complex, from the purple bacteria Rhodopseudomonas (Rps.) acidophila strain 7050 has been
94 ssion spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila.
95 stal structure is very similar to the LH2 of Rhodopseudomonas (Rps.) acidophila.
96 plasmic (ICM) vesicles (chromatophores) from Rhodopseudomonas sphaeroides using an air-driven ultrace
97 ed from bacterial cells (chromatophores from Rhodopseudomonas sphaeroides) and mammalian cells (mu-op
98 eaction centers, Rhodobacter sphaeroides and Rhodopseudomonas viridis [containing ubiquinone (UQ) or
99 s in the photosynthetic reaction center from Rhodopseudomonas viridis and the ruthenated heme protein
100 ter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis has been investigated with tran
101 protein from Blastochloris viridis (formerly Rhodopseudomonas viridis) were reconstituted with ubiqui

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top