戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1  each of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium.
2  wild-type but not for attenuated strains of S. enterica serovar Typhimurium.
3 sceptibility of caveolin-1-deficient mice to S. enterica serovar Typhimurium.
4 encoding PagL, PagP, and LpxR into wild-type S. enterica serovar Typhimurium.
5 , there was significant biofilm formation by S. enterica serovar Typhimurium.
6 (28)/FlgM interactions were also isolated in S. enterica serovar Typhimurium.
7  in the formation of an extensive biofilm of S. enterica serovar Typhimurium.
8 ty did not reach the level of wild-type (WT) S. enterica serovar Typhimurium.
9 ppears to have been acquired horizontally in S. enterica serovar Typhimurium.
10 ted on an island integrated at tRNA(PheU) in S. enterica serovar Typhimurium.
11  rechallenge of immunized mice with virulent S. enterica serovar Typhimurium.
12 In order to identify SoxS-regulated genes in S. enterica serovar Typhimurium, a lacI-regulated expres
13 tive specimens identical to the hisJ gene of S. enterica serovar Typhimurium and a second group of am
14                              Inoculations of S. enterica serovar Typhimurium and E. coli resulted in
15                        Six genetic loci from S. enterica serovar Typhimurium and four from S. enteric
16 ductase) reduces the growth of intracellular S. enterica serovar Typhimurium and has no effect on ext
17                                 In contrast, S. enterica serovar Typhimurium and S. enterica serovar
18 urther into this pathway, we also found that S. enterica serovar Typhimurium and S. flexneri activate
19                                              S. enterica serovar Typhimurium and S. flexneri cell ent
20 ing 12/15-lipoxygenase (12/15-LOX), and that S. enterica serovar Typhimurium and S. flexneri share ce
21                               Thus, although S. enterica serovar Typhimurium and S. flexneri utilize
22       Microscopy studies indicated that both S. enterica serovar Typhimurium and S. flexneri were loc
23 r stability of antigen-expressing plasmid in S. enterica serovar Typhimurium and/or prolonged intesti
24 trast, other pathogenic salmonellae, such as S. enterica serovars Typhimurium and Dublin (S. typhimur
25 ci were useful in distinguishing isolates of S. enterica serovars Typhimurium and Newport that had di
26                                  Isolates of S. enterica serovars Typhimurium and Newport that were r
27 d used to amplify PCR targets in isolates of S. enterica serovars Typhimurium and Newport.
28            In this study we have compared in S. enterica serovars Typhimurium and Typhi the effect of
29  (by single and double mutations) strains of S. enterica serovars Typhimurium and Typhi were recovere
30 om Vibrio cholerae, Yersinia enterocolitica, S. enterica serovar Typhimurium, and Klebsiella pneumoni
31 n of inflammatory responses by intracellular S. enterica serovar Typhimurium, and perhaps Shigella fl
32 rom Salmonella enterica serovar Enteritidis, S. enterica serovar Typhimurium, and Pseudomonas aerugin
33 binantly expressed in the insoluble phase in S. enterica serovar Typhimurium, and the immunogenicity
34  Five of the six volunteers seroconverted to S. enterica serovar Typhimurium antigens and had strong
35                                   Attenuated S. enterica serovar Typhimurium appears to be more effec
36                       In this study, we used S. enterica serovar Typhimurium as an in vivo heterologo
37  constructed and characterized a recombinant S. enterica serovar Typhimurium avirulent vaccine strain
38  nonoxidative early intracellular killing of S. enterica serovar Typhimurium by human macrophages and
39      The results of this study indicate that S. enterica serovar Typhimurium can outgrow E. coli in h
40 he cecum and large intestine with 10x LD(50) S. enterica serovar Typhimurium challenge at 7 days post
41 onal and if it was evolutionarily similar to S. enterica serovar Typhimurium CorA.
42 var Typhimurium or pulsed with proteins from S. enterica serovar Typhimurium culture supernatants.
43                                              S. enterica serovar Typhimurium Dam mutant strains exhib
44                                        Also, S. enterica serovar Typhimurium Dam(-) vaccines were not
45                    To improve sensitivity of S. enterica serovar Typhimurium detection, multiwalled c
46 um chloride (DPI), but infection of MDM with S. enterica serovar Typhimurium did not cause an increas
47                     A colanic acid/cellulose S. enterica serovar Typhimurium double mutant formed a m
48 ritidis, whose overexpression conferred upon S. enterica serovar Typhimurium enhanced resistance to e
49                                              S. enterica serovar Typhimurium entry requires a functio
50 ions occurring in this locus in FQ-resistant S. enterica serovar Typhimurium epidemic clones resulted
51 kappa B p50 and p52 subunits, was induced by S. enterica serovar Typhimurium even in the absence of f
52  10(7) to 8 x 10(7) CFU of phoP/phoQ-deleted S. enterica serovar Typhimurium expressing the same anti
53              The half-saturation affinity of S. enterica serovar Typhimurium for H2 is only 2.1 micro
54 on, we screened a transposon library made in S. enterica serovar Typhimurium for the ability to persi
55        Additional experiments with wild-type S. enterica serovar Typhimurium, fully capable of switch
56 which is necessary for the full virulence of S. enterica serovar Typhimurium Gifsy-2 lysogens.
57   Nevertheless, the strain complemented with S. enterica serovar Typhimurium GS grew as well as the w
58 ype strain because of poor expression of the S. enterica serovar Typhimurium GS in the heterologous M
59                                        While S. enterica serovar Typhimurium has been shown to kill i
60                                          The S. enterica serovar Typhimurium hybrid strains showed si
61 e inducible genes by the insertions rendered S. enterica serovar Typhimurium hypersensitive to millim
62  on the concentrations, inhibits E. coli and S. enterica serovar Typhimurium in an additive or antago
63 CD8 T cells contribute to protection against S. enterica serovar Typhimurium in mice, but little is k
64 B signaling pathway and promote virulence of S. enterica serovar Typhimurium in mice.
65 imple method for identifying new variants of S. enterica serovar Typhimurium in the field.
66  (CD11b+), and dendritic cells (CD11c+) with S. enterica serovar Typhimurium induced an up-regulation
67 port here that CD8 T-cell lines derived from S. enterica serovar Typhimurium-infected BALB/c mice lys
68 ings indicate that c-Abl is activated during S. enterica serovar Typhimurium infection and that its p
69 ce factor known to be upregulated in vivo in S. enterica serovar Typhimurium infection of mice.
70 e of two different haplotypes following oral S. enterica serovar Typhimurium infection.
71 r alpha (TNF-alpha) secretion in response to S. enterica serovar Typhimurium infection.
72 ibitor, Co(III) hexaammine, had no effect on S. enterica serovar Typhimurium invasion of Caco-2 epith
73                  These results indicate that S. enterica serovar Typhimurium is an excellent delivery
74 contained class I integrons, with 71% of the S. enterica serovar Typhimurium isolates and 6.9% of iso
75 s that could be used to discriminate between S. enterica serovar Typhimurium isolates from the same g
76  multiple methods is needed to differentiate S. enterica serovar Typhimurium isolates that geneticall
77 fications were absent in the closely related S. enterica serovar Typhimurium LT2 and from a mutant of
78 serB hsdM, S and R, that in E. coli K-12 and S. enterica serovar typhimurium LT2 is serB hsdR, M and
79                          It is proposed that S. enterica serovar Typhimurium LT2 may not have a cob(I
80  to the sequence reported in GenBank for the S. enterica serovar Typhimurium LT2 strain.
81                                              S. enterica serovar Typhimurium MntH contributes to H(2)
82                                              S. enterica serovar Typhimurium MntH expression is impor
83 s also reduce bacterial proliferation in the S. enterica serovar Typhimurium mouse model.
84                                           An S. enterica serovar Typhimurium mutant carrying a loss-o
85 rgJ and the needle protein PrgI in different S. enterica serovar Typhimurium mutant strains.
86                                              S. enterica serovar Typhimurium oligonucleotide microarr
87  lysed bone marrow macrophages infected with S. enterica serovar Typhimurium or pulsed with proteins
88 ved in other Salmonella strains, i.e., other S. enterica serovar Typhimurium phage types and other S.
89  with the serovar Typhi plasmid pHCM1 and an S. enterica serovar Typhimurium plasmid pR27.
90 than the hyperactive phenotype seen with the S. enterica serovar Typhimurium protein.
91  intestinal stage of infection but that once S. enterica serovar Typhimurium reaches the spleens of s
92  the previously uncharacterized aer locus of S. enterica serovar Typhimurium revealed them to be cont
93              In this study, PoxA- mutants of S. enterica serovar Typhimurium (S. typhimurium) were fo
94  several distinct pathways that can modulate S. enterica serovar Typhimurium's ability to express hil
95 n of a substrate of this secretion system in S. enterica serovar typhimurium (Salmonella typhimurium)
96                              A fis mutant of S. enterica serovar Typhimurium showed a ninefold increa
97                  The chromosomal copy of the S. enterica serovar Typhimurium sigma(28) structural gen
98 f S. enterica serovar Typhi CVD 908-htrA and S. enterica serovar Typhimurium SL3261 carrying plasmid
99  H2-M3-transfected fibroblasts infected with S. enterica serovar Typhimurium SL3261 or treated with S
100 of the four GTPases known to be activated by S. enterica serovar Typhimurium SopE are individually re
101                                          The S. enterica serovar Typhimurium soxRS system also mediat
102 , a lacI-regulated expression system for the S. enterica serovar Typhimurium soxS gene was developed.
103                                              S. enterica serovar Typhimurium ssrA mutants fail to sup
104 eement with results obtained in the original S. enterica serovar Typhimurium STM screen, illustrating
105                                              S. enterica serovar Typhimurium strain 14028 produces tw
106 biosynthetic gene, wcaM, was introduced into S. enterica serovar Typhimurium strain BJ2710 and was fo
107 SL2361 and then challenged with the virulent S. enterica serovar Typhimurium strain C5, 100% of the I
108  Serovars Gallinarum and Pullorum expressing S. enterica serovar Typhimurium strain LT2 type 1 fimbri
109           A 50,000-CFU transposon library of S. enterica serovar Typhimurium strain SL1344 was serial
110    In contrast, a highly modified attenuated S. enterica serovar Typhimurium strain was not present i
111                     One hundred twenty-eight S. enterica serovar Typhimurium strains isolated from ca
112  et al. that oral inoculation with wild-type S. enterica serovar Typhimurium strains lead to bacteria
113                                           In S. enterica serovar Typhimurium strains that had the abi
114 ties for S. enterica serovar Enteritidis and S. enterica serovar Typhimurium strains when a minimum o
115 PFGE for S. enterica serovar Enteritidis and S. enterica serovar Typhimurium strains, respectively.
116 I, BlnI, and SpeI were most concordant among S. enterica serovar Typhimurium strains.
117 ane permeability) upon infection by invasive S. enterica serovar Typhimurium than do infected control
118 ns that were more closely related to hisJ of S. enterica serovar Typhimurium than to other hisJ seque
119 reaching the level in cells infected with WT S. enterica serovar Typhimurium, than the level in host
120 , we constructed phase-locked derivatives of S. enterica serovar Typhimurium that expressed only FljB
121                                           In S. enterica serovar Typhimurium, the PmrA/PmrB two-compo
122                                           In S. enterica serovar Typhimurium, the reduction in activi
123  was first formed followed by challenge with S. enterica serovar Typhimurium, there was significant b
124 cate that during infection of macrophages by S. enterica serovar Typhimurium, TLR4 signals are requir
125 e that mig-14 is necessary for resistance of S. enterica serovar Typhimurium to both polymyxin B and
126  have a significant effect on the ability of S. enterica serovar Typhimurium to establish a systemic
127 egulator (prpR)) were evaluated in wild-type S. enterica serovar Typhimurium TR6583 and prpB(-) or pr
128 utant retained intact LPS, we constructed an S. enterica serovar Typhimurium triple-knockout (TKO) mu
129 ve now characterized transport by SitABCD in S. enterica serovar Typhimurium using (54)Mn(2+) and (55
130 onstrated in both Escherichia coli JM109 and S. enterica serovar Typhimurium vaccine strain chi4072.
131            When mice were immunized with the S. enterica serovar Typhimurium vaccine strain SL2361 an
132                                          The S. enterica serovar Typhimurium vaccine strain was const
133 ognized by sera from mice immunized with the S. enterica serovar Typhimurium vaccine strain.
134              Despite success with attenuated S. enterica serovar Typhimurium vectors in animals, earl
135 I account for the contribution of Gifsy-2 to S. enterica serovar Typhimurium virulence in the murine
136 ociated with the needle complex in wild-type S. enterica serovar Typhimurium, was absent from needle
137 is of the determinants of thermotolerance in S. enterica serovar Typhimurium, we isolated the chr-1 m
138   Although excess Fe2+ was slightly toxic to S. enterica serovar Typhimurium, we were unable to elici
139                 Random transposon mutants of S. enterica serovar Typhimurium were screened for impair
140                                         When S. enterica serovar Typhimurium with the chromosomally i
141 ay complementary roles in the interaction of S. enterica serovar Typhimurium with the host intestinal

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top