コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 or 5 microM 7-ethyl-10-hydroxycamptothecin (SN-38).
2 38 glucuronide (the precursor of enterotoxic SN-38).
3 release of two anticancer drugs (CPT-11 and SN-38).
4 d a variety of human carcinoma cell lines to SN-38.
5 ells treated with the topoisomerase I poison SN-38.
6 ce to camptothecin derivatives topotecan and SN-38.
7 ugate did not produce a high initial Cmax of SN-38.
8 the glucuronidation of the active metabolite SN-38.
9 mitoxantrone, anthracyclines, topotecan, and SN-38.
10 yield the potent topoisomerase I inhibitor, SN-38.
11 an) to the much more potent chemotherapeutic SN-38.
12 nzyme that can efficiently convert CPT-11 to SN-38.
13 fold increase in induction of apoptosis with SN-38.
14 sensitivity of cells to undergo apoptosis by SN-38.
15 yield the potent topoisomerase I inhibitor, SN-38.
16 eptor autophosphorylation were unaffected by SN-38.
17 s to yield the potent topoisomerase I poison SN-38.
18 top1 cleavage complexes than camptothecin or SN-38.
19 ated approximately 5-fold less conversion to SN-38.
20 sults in presystemic conversion of CPT-11 to SN-38.
21 aturation in the conversion of irinotecan to SN-38.
22 ynamics of CPT-11 and its active metabolite, SN-38.
23 s to convert CPT-11 to its active metabolite SN-38.
24 ells when treated with ara-C, doxorubicin or SN-38.
25 tic agents ara-C, doxorubicin, etoposide and SN-38.
26 MMU-132), a Trop-2 ADC, for the targeting of SN-38.
27 tabolism of CPT-11 to its active metabolite, SN-38.
28 ide and teniposide and between merbarone and SN-38.
29 ndex (BI), the estimated biliary exposure of SN-38.
30 effect on the pharmacokinetics of CPT-11 or SN-38.
31 onide is attributed to low hepatic uptake of SN-38.
32 of distinguishing CPT-11 from its metabolite SN-38.
33 d induction of apoptosis in cells exposed to SN-38.
34 was synergistic with oxaliplatin, 5-FU, and SN-38.
35 rogation of the G(2)/M checkpoint induced by SN-38.
36 own to hydrolyze CPT-11 into the active form SN-38.
37 0.53; AUCSN-38 = 5.38 x SN-38(3.5) + 33.61 x SN-38(11.5) - 7.73; and AUCSN-38G = 10.73 x SN-38G9.5 +
38 x CPT-11(11.5) + 1,520.53; AUCSN-38 = 5.38 x SN-38(3.5) + 33.61 x SN-38(11.5) - 7.73; and AUCSN-38G =
39 ing LS.Among 77 patients with IHC testing on SNs, 38 (49%) had loss of staining of 1 or more MMR prot
40 a in this study show metabolism of CPT-11 to SN-38 (7-ethyl-10-hydroxycamptothecin) by a rabbit liver
44 ) to produce 7-ethyl-10-hydroxycamptothecin (SN-38), a topoisomerase inhibitor used in cancer therapy
46 est, these cell lines are cross-resistant to SN-38, a putative topo I inhibitor, but cross-resistance
48 and low plasma concentrations of CPT-11 and SN-38 achieved in this patient population suggest that c
49 led administration of an efficacious dose of SN-38, achieving significant regression of the SW620 tum
50 It is concluded that gefitinib may modulate SN-38 activity at the cellular level to reverse tumor re
57 of the human colon cancer cells Hct116 with SN-38 (an active metabolite of CPT-11) resulted in G2 ce
58 t induced by 7-ethyl-10-hydroxycamptothecin (SN-38), an active metabolite of irinotecan, in p53-null
59 I inhibitor 7-ethyl-10-hydroxycamptothecin (SN-38), an inducer of premature senescence in tumor cell
62 significant correlation was observed between SN-38 and bilirubin glucuronidation (r = 0.89; P = 0.001
65 IF7 conjugated to the potent anticancer drug SN-38 and injected intravenously into nude mice carrying
70 inhibited activation of NF-kappaB induced by SN-38 and resulted in a significantly higher level of gr
71 s ABCG2-mediated resistance to topotecan and SN-38 and significantly increases accumulation of topote
72 okinetics of irinotecan and its metabolites, SN-38 and SN-38 glucuronide (SN-38G), were analyzed.
73 oncentrations of CPT-11 and its metabolites, SN-38 and SN-38 glucuronide (SN-38G), were determined in
75 okinetics of irinotecan and its metabolites, SN-38 and SN-38G, by possibly reducing biliary excretion
76 dly up-regulated during cell cycle arrest by SN-38 and suppressed during apoptosis by SN-38 followed
77 f the UGT responsible for glucuronidation of SN-38 and the anthraquinone NU/ICRF 505 was achieved by
78 seen between pharmacokinetics of irinotecan/SN-38 and the clinical parameters of response, survival,
79 oxicity assays, ABCG2-mediated resistance to SN-38 and topotecan was abrogated in ABCG2-transfected H
80 ross-resistance to CPT derivatives including SN-38 and topotecan, but are not cross-resistant to the
82 3 increased the steady-state accumulation of SN-38 and TPT by 9.4 +/- 1.9- and 1.8 +/- 0.2-fold, resp
83 1033 enhanced the uptake and cytotoxicity of SN-38 and TPT in cells transfected with BCRP but not emp
85 activity of the sympathetic nervous system (SNS) (-38%), and plasma leptin (-44%), insulin (-54%), a
86 po) I inhibitor (camptothecin, topotecan, or SN-38) and tumor necrosis factor-related apoptosis-induc
87 , etoposide, 7-ethyl-10-hydroxycamptothecin (SN-38), and doxorubicin in MCF-7 breast cancer cells.
88 its clinical derivatives, topotecan, CPT-11, SN-38, and 9-aminocamptothecin differed in their potency
89 cking and hydrophobicity interaction between SN-38, and a unique class of photonic nanoporphyrin mice
90 to convert CPT-11 to its active metabolite, SN-38, and effectively suppressed resistant cell growth
98 er with cefixime than without cefixime (mean SN-38 area under the curve: 19.5 ng x h/mL; standard dev
99 with the 7/7 genotype tended to have higher SN-38 area under the plasma time-concentration curve (AU
100 type, dosing by genotype resulted in similar SN-38 areas under the curve (AUCs; r(2) = 0.0003; P = .9
102 o better than the active form of irinotecan, SN-38 at 1 microM, FL118 effectively inhibited cancer ce
106 vity toward daunorubicin (P-gp and MRP1) and SN-38 (BCRP) in A2780/ADR (P-gp), H69AR (MRP1), and MDCK
109 in (SN-38) or direct conversion of CPT-11 to SN-38 by carboxylesterases (CE) in the small intestine.
112 y that the initial uptake rate of CPT-11 and SN-38 by intestinal cells was significantly different be
113 gest that the enhanced cellular lethality of SN-38 by MSC was not associated with cell cycle regulati
114 Because the decreased initial uptake of SN-38 carboxylate resulted in a reduced cellular toxicit
116 entify a linker, dose and dosing regimen for SN-38 conjugated to polyoxazoline-modified dendrimer tha
119 lonal antibody, hMN-14, prepared using these SN-38 derivatives were evaluated in vitro for stability
123 h inhibition compared with tumors with lower SN-38 duration, confirming the importance of this factor
124 tivity predicted a concave increase in tumor SN-38 duration, which was confirmed experimentally in 13
125 pically very difficult to produce sub-100nm, SN-38-encapsulated nanoparticles without modification of
126 light irradiation, combination therapy with SN-38-encapsulated nanoporphyrin micelles (SN-NPM) enhan
127 ort on the successful production of 20-30nm, SN-38-encapsulated photonic micelles for effectively tri
129 release half-life of 21h achieved sustained SN-38 exposure in blood, above the target concentration.
130 by SN-38 and suppressed during apoptosis by SN-38 followed by flavopiridol in Hct116 cells is Drg1.
142 e variation in APC (a metabolite of CPT-11), SN-38 glucuronide (SN-38G), and SN-38G/SN-38 AUCs, respe
144 ons of CPT-11 and its metabolites, SN-38 and SN-38 glucuronide (SN-38G), were determined in a subset
146 for extended periods, and forms very little SN-38 glucuronide (the precursor of enterotoxic SN-38).
147 A wide intersubject variability in in vitro SN-38 glucuronide formation rates was found in humans.
150 metabolite, 7-ethyl-10-hydroxy-camptothecin (SN-38), have a labile alpha-hydroxy-lactone ring that un
152 isms of cytotoxicity and cross-resistance of SN-38 in CEM/M70-B cells might be similar to those of me
153 ctivity was observed in the cells exposed to SN-38 in combination with MSC compared to SN-38 alone.
154 e encapsulated the topoisomerase-I inhibitor SN-38 in polymeric nanoparticles (NPs) surface-decorated
155 ition, pharmacokinetic studies of CPT-11 and SN-38 in these animals demonstrated approximately 5-fold
157 esistance to 7-ethyl-10-hydroxycamptothecin (SN-38) in colon cancer cells in vitro, and attenuates PX
158 delivery of 7-ethyl-10-hydroxycamptothecin (SN-38), in an expanded phase II trial of patients with r
160 potentiates 7-ethyl-10-hydroxycamptothecin (SN-38)-induced cell lethality in vitro in the p53-defect
162 ) sensitized both p53+/+ and p53-/- cells to SN-38-induced apoptosis with increase of gamma H2AX, a m
164 osure of cells to an IC(50) concentration of SN-38 induces biphasic DNA double-strand break (DSBs): a
166 Here we show that low-dose metformin or SN-38 inhibits cell growth or survival in ovarian and br
167 monstrate the correlation between the CPT-11/SN-38 initial uptake rate and the induced toxicity, cell
169 Specifically, the chemotherapeutic agent SN-38 is incorporated into a central 'core' layer, betwe
170 likely that direct conversion of the drug to SN-38 is partially responsible for the diarrhea associat
172 due to the ultra-flat aromatic structure of SN-38, it is typically very difficult to produce sub-100
175 as well as a 20% reduction of the intestinal SN-38 lactone concentration of animals receiving CPT-11
177 tration-time curve (AUC) for both CPT-11 and SN-38 lactone, implying no saturation in the conversion
180 uperhydrophobicity, in vitro cytotoxicity of SN-38 loaded meshes, and compatibility provide key desig
181 e results suggest that low-dose metformin or SN-38 may reprogram these cancer cells into non-cancerou
182 und that DNA-protein complexes stabilized by SN-38 might be different from those stabilized by topo I
183 rent mechanisms, whereas cross-resistance to SN-38 might be through a merbarone-related mechanism.
186 ro gefitinib potently reversed resistance to SN-38 only in a cell line that overexpressed functional
191 C-3 or NSCLC-5) cells with the topo I poison SN-38 or the topo II poison etoposide (VP-16) leads to a
192 utant IkappaBalpha (mIkappaBalpha) inhibited SN-38 or VP-16 induced transcription and DNA binding act
193 atment with MG-132, exposure to MG-132 after SN-38 or VP-16 treatment of neo or mIkappaBalpha cells d
196 e metabolite 7-ethyl-10-hydroxycamptothecin (SN-38) or direct conversion of CPT-11 to SN-38 by carbox
198 ied the duration for which concentrations of SN-38 persisted above a critical intratumoral threshold
199 , we show that clinically relevant levels of SN-38 potently induce cell cycle arrest and temporary se
201 the rat indicate that, in contrast to other SN-38 prodrugs, the slowly released SN-38 shows a very l
202 and this resulted in a 200-fold reduction in SN-38 production after incubation with CPT-11 in vitro.
208 The addition of a model bioactive agent (SN-38) showed a release rate with a striking dependence
209 to other SN-38 prodrugs, the slowly released SN-38 shows a very low C(max), is kept above target conc
214 Moreover, a synergistic activity of 5c with SN-38 (the active metabolite of irinotecan) and 5-fluoro
215 On day 1, the median systemic exposure to SN-38 (the active metabolite of irinotecan) at the MTD w
216 1, as oxaliplatin, 5-fluorouracil (5-FU), or SN-38 (the active metabolite of irinotecan) induced Notc
217 dy-state plasma concentration (Css) of total SN-38 (the active metabolite of irinotecan) was 6.42 +/-
218 2), a transporter that confers resistance to SN-38 (the active metabolite of irinotecan), was readily
219 po) I poison 7-ethyl-10-hydroxycamptothecin (SN-38), the active metabolite of irinotecan, in a number
222 lular exposure to cytotoxic concentration of SN-38, the active metabolite of irinotecan (0.1 microM)
227 logue PS-341 (1 microM) prior to exposure to SN-38, the active metabolite of the topoisomerase I inhi
228 to be secondary to the biliary excretion of SN-38, the extent of which is determined by SN-38 glucur
229 ytidine) and 7-ethyl-10-hydroxycamptothecin (SN-38; the active metabolite of irinotecan), two S-phase
234 more potent topoisomerase I inhibition than SN-38, topotecan, and camptothecin in preclinical studie
237 the resistant cells could be observed after SN-38 treatment but not after camptothecin treatment.
239 of the irinotecan (CPT-11) active metabolite SN-38 via a phenyl ether that release the drug with pred
242 owed that the extent of tumor penetration by SN-38 was significantly higher in mice receiving the tar
243 in micelles (NPM), the extremely hydrophobic SN-38 was successfully encapsulated into NPM with signif
244 erapeutic index, bifunctional derivatives of SN-38 were prepared for use in antibody-based targeted t
245 ts of simultaneous treatment with CI1033 and SN-38 were synergistic in T98G glioblastoma cells and HC
247 ins is critical toward the detoxification of SN-38, whereas induction of the UGT1A1 gene may serve to
248 ces high initial and local concentrations of SN-38, which are associated with gastrointestinal toxici
249 atic and intestinal carboxylesterase to form SN-38, which in turn is detoxified primarily through UDP
251 l-cholinesterase (BuChE) converted CPT-11 to SN-38 with K(m)s of 42.4 and 44.2 microM for the human a
252 ins cdc6, MCM2, and cdc25A after exposure to SN-38 with MSC further indicates a relationship between
255 2 phosphorylation at threonine-68 induced by SN-38, with no significant effect on chk1 phosphorylatio
256 are efficient in the conversion of CPT-11 to SN-38, yet both demonstrate little homology to the rabbi
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。