コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 Gram negative bacteria (Escherichia coli and Salmonella enterica serovar Typhimurium).
2 d by enteric bacteria Citrobacter koseri and Salmonella enterica serovar typhimurium.
3 activate a periplasmic Cu,Zn-SOD (SodCII) in Salmonella enterica serovar Typhimurium.
4 -like cells are required for defense against Salmonella enterica serovar Typhimurium.
5 fy mechanisms of persistence in the pathogen Salmonella enterica serovar Typhimurium.
6 +) homeostasis in the Gram-negative pathogen Salmonella enterica serovar Typhimurium.
7 proportion of these infections are caused by Salmonella enterica serovar Typhimurium.
8 QseC activates virulence gene expression in Salmonella enterica serovar Typhimurium.
9 physiological analyses of a 2-h lag phase in Salmonella enterica serovar Typhimurium.
10 CDGA activity was first tested with Salmonella enterica serovar Typhimurium.
11 t bacterial surface antigens associated with Salmonella enterica Serovar Typhimurium.
12 r (P(class2)) gene expression to assembly in Salmonella enterica serovar Typhimurium.
13 ation as inhibitors of type III secretion in Salmonella enterica serovar Typhimurium.
14 t intracellular states of the model pathogen Salmonella enterica serovar Typhimurium.
15 t doses that did not affect the viability of Salmonella enterica serovar Typhimurium.
16 he primary source of intracellular Mg(2+) in Salmonella enterica serovar Typhimurium.
17 CorA is the primary Mg(2+) channel in Salmonella enterica serovar Typhimurium.
18 thologs OmpT in Escherichia coli and PgtE in Salmonella enterica serovar Typhimurium.
19 ine on the transcriptome of the gut pathogen Salmonella enterica serovar Typhimurium.
20 helial oxygenation, and aerobic expansion of Salmonella enterica serovar Typhimurium.
21 ng activity of macrophages against wild-type Salmonella enterica serovar Typhimurium.
22 injection of the viral genome into the host Salmonella enterica serovar Typhimurium.
23 atory properties of this signaling system in Salmonella enterica serovar Typhimurium.
24 nt decrease in survival when challenged with Salmonella enterica serovar Typhimurium.
25 and related enteric bacteria but differs in Salmonella enterica serovar Typhimurium.
26 ts its 43 kbp genome across the cell wall of Salmonella enterica serovar Typhimurium.
27 e a large set of genes affecting motility in Salmonella enterica serovar Typhimurium.
28 taxis, is essential for swarming motility in Salmonella enterica serovar Typhimurium.
29 me responsible for aerobic NO. metabolism by Salmonella enterica serovar typhimurium.
30 identifying mutations in the MEP pathway of Salmonella enterica serovar Typhimurium.
31 odes the major component of the flagellum in Salmonella enterica serovar Typhimurium.
32 diating resistance to Fe(III) and Al(III) in Salmonella enterica serovar Typhimurium.
33 oQ in the facultative intracellular pathogen Salmonella enterica serovar Typhimurium.
34 charide stimulation or upon coinfection with Salmonella enterica serovar Typhimurium.
35 en Vibrio cholerae and the invasive pathogen Salmonella enterica serovar Typhimurium.
36 of physiological and virulence functions in Salmonella enterica serovar Typhimurium.
37 anced susceptibility to hydrogen peroxide in Salmonella enterica serovar Typhimurium.
38 stinal inflammation during colitis caused by Salmonella enterica serovar Typhimurium.
39 Of the 102 typed NTS isolates, 40% (41) were Salmonella enterica serovar Typhimurium, 10% (10) were S
40 e with Plasmodium yoelii 17XNL (Py17XNL) and Salmonella enterica serovar Typhimurium 12023 (Salmonell
44 udy describes maturation processes in living Salmonella enterica serovar Typhimurium, a prevalent cau
45 ucidate the host transcriptional response to Salmonella enterica serovar Typhimurium, Affymetrix porc
46 scherichia coli, Yersinia enterocolitica and Salmonella enterica serovar Typhimurium (all gram-negati
47 533, following infection of macrophages with Salmonella enterica serovar Typhimurium (also known as S
50 o control infection by the enteric pathogens Salmonella enterica serovar Typhimurium and Citrobacter
51 ial amyloids using curli fibers, produced by Salmonella enterica serovar Typhimurium and Escherichia
52 ive infection with Pseudomonas aeruginosa or Salmonella enterica serovar Typhimurium and had no or a
54 charide (LPS) is a major virulence factor of Salmonella enterica serovar Typhimurium and is composed
55 ed IFN-gamma response following infection by Salmonella enterica serovar Typhimurium and Listeria mon
56 n important role in the host defense against Salmonella enterica serovar Typhimurium and perhaps othe
58 were found to be susceptible to invasion by Salmonella enterica serovar Typhimurium and Shigella fle
59 for autophagy of the intracellular pathogen Salmonella enterica serovar Typhimurium and show that th
60 t here that Fur is required for virulence in Salmonella enterica serovar Typhimurium and that Fur is
61 n in the Mg(2+)-sensing mgtA riboswitch from Salmonella enterica serovar Typhimurium and the flavin m
62 flexneri and other pathogens that use T3SS, Salmonella enterica serovar Typhimurium and Yersinia pse
63 Nontyphoidal Salmonella (NTS), particularly Salmonella enterica serovars Typhimurium and Enteritidis
64 sa, Staphylococcus aureus, Escherichia coli, Salmonella enterica serovar Typhimurium, and Salmonella
69 on with the intracellular bacterial pathogen Salmonella enterica serovar Typhimurium as shown by thei
70 Shigella flexneri and the vT3SS and fT3SS of Salmonella enterica serovar Typhimurium at ~5 and ~4 nm
72 The pattern of global gene expression in Salmonella enterica serovar Typhimurium bacteria harvest
76 tein (ycfR) were specifically upregulated in Salmonella enterica serovar Typhimurium biofilms grown o
78 sette transporters from several rhizobia and Salmonella enterica serovar Typhimurium, but not seconda
79 Here, we report that pyroptosis induced by Salmonella enterica serovar Typhimurium can be positivel
81 ion system from the bacterial enteropathogen Salmonella enterica serovar Typhimurium can sort its sub
84 he 50% lethal dose (LD(50)) or 10x LD(50) of Salmonella enterica serovar Typhimurium caused changes i
88 lness in humans, termed typhoid fever, while Salmonella enterica serovar Typhimurium causes localized
89 The Gram-negative intracellular bacterium Salmonella enterica serovar Typhimurium causes persisten
94 l compartments and a reduced ability to kill Salmonella enterica serovar Typhimurium compared to that
96 ighly conserved loop, (281)EFMPELKWS(289) in Salmonella enterica serovar Typhimurium CorA, is the onl
98 inserts, we determined that infection with a Salmonella enterica serovar Typhimurium csgBA mutant, wh
101 gions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.
102 d ProU transporter from Escherichia coli and Salmonella enterica serovar Typhimurium did not function
103 toxified outer membrane vesicles (OMVs) from Salmonella enterica serovar Typhimurium displaying the v
104 dentified the dissemination of two prevalent Salmonella enterica serovar Typhimurium DT104 clones in
105 provide an important colonization niche for Salmonella enterica serovar Typhimurium during gastroint
106 merozoite antigen EAMZ250 were fused to the Salmonella enterica serovar Typhimurium effector protein
108 ic bacteria, either Klebsiella pneumoniae or Salmonella enterica serovar Typhimurium, enhanced transl
113 ranasal immunization of mice with attenuated Salmonella enterica serovar Typhimurium expressing the O
115 , we tested the immunoadjuvant properties of Salmonella enterica serovar Typhimurium flagellin (FliC)
116 fic monoclonal IgA, is a potent inhibitor of Salmonella enterica serovar Typhimurium flagellum-based
118 on significantly attenuates the virulence of Salmonella enterica serovar Typhimurium following intrap
119 ite sequencing (TraDIS) to screen mutants of Salmonella enterica serovar Typhimurium for their abilit
120 enotyping methods to distinguish isolates of Salmonella enterica serovar Typhimurium from different f
121 ance of the Gram-negative bacterial pathogen Salmonella enterica serovar Typhimurium from macrophages
122 tracellular gram-negative bacterial pathogen Salmonella enterica serovar Typhimurium gains entry into
123 ur genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals
125 ugars on the virulence and immunogenicity of Salmonella enterica serovar Typhimurium has not been sys
126 e human chitotriosidase and a chitinase from Salmonella enterica serovar Typhimurium hydrolyze LacNAc
127 is the major regulator of LPS alterations in Salmonella enterica serovar Typhimurium, impaired growth
128 ed and surface-associated cell components of Salmonella enterica serovar Typhimurium, including O ant
129 and RcsC/YojN/RcsB two-component systems of Salmonella enterica serovar Typhimurium independently pr
131 that TcpB protein can efficiently attenuate Salmonella enterica serovar Typhimurium-induced pyroptos
133 n simultaneously in pathogen and host during Salmonella enterica serovar Typhimurium infection and re
135 his study investigates the effect of peroral Salmonella enterica serovar Typhimurium infection on the
138 R, a highly hydrophobic peptide expressed in Salmonella enterica serovar Typhimurium, inhibits growth
139 on contact with intestinal epithelial cells, Salmonella enterica serovar Typhimurium injects a set of
140 ty Island (SPI)-2 permitted the expansion of Salmonella enterica serovar Typhimurium into the intrace
153 Invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium is an energetica
156 h of the in vivo innate immune resistance of Salmonella enterica serovar Typhimurium is attributed to
157 expression of the Mg(2+) transporter MgtA of Salmonella enterica serovar Typhimurium is controlled by
159 very of putative iron efflux transporters in Salmonella enterica serovar Typhimurium is discussed in
160 We now report that RpoS accumulates when Salmonella enterica serovar Typhimurium is growing logar
161 e invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium is mediated by a
162 ism for enforcing this temporal hierarchy in Salmonella enterica serovar Typhimurium is the sigma(28)
163 tedly, the allosteric mechanism of FrmR from Salmonella enterica serovar Typhimurium is triggered by
167 ty testing and multilocus sequence typing on Salmonella enterica serovar Typhimurium isolates was per
169 The Salmonella enterica serovar Typhimurium lipopolysacchari
175 milar to purified PDU microcompartments from Salmonella enterica serovar Typhimurium LT2 that were im
176 we demonstrate detection of genomic DNA from Salmonella enterica serovar Typhimurium LT2 with a limit
177 alis, Escherichia coli K12, E. coli O157:H7, Salmonella enterica serovar Typhimurium LT2, Staphylococ
182 e of the Na(+)-coupled melibiose permease of Salmonella enterica serovar Typhimurium (MelBSt) demonst
186 ed a metabolically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its a
188 LPS mutants, which are derived from E. coli, Salmonella enterica serovar Typhimurium, Neisseria gonor
189 srR target is inactivated by mutation at the Salmonella enterica serovar Typhimurium nrf promoter.
190 prising two and three O-antigen repeats from Salmonella enterica serovar Typhimurium: octasaccharide
191 o the secretion and translocation signals of Salmonella enterica serovar Typhimurium of the type III
192 eria monocytogenes but not vacuole-localized Salmonella enterica serovar Typhimurium or extracellular
193 her structure of CMV, adenovirus serotype 2, Salmonella enterica serovar Typhimurium, or of cells use
194 nterohemorrhagic Escherichia coli (EHEC) and Salmonella enterica serovar Typhimurium, or the surrogat
196 ein translocases SipB, SipC, and SipD of the Salmonella enterica serovar Typhimurium pathogenicity is
198 we present the structure of the prototypical Salmonella enterica serovar Typhimurium pathogenicity is
199 cted targets in other bacteria, specifically Salmonella enterica serovar Typhimurium, Pectobacterium
205 were combined to identify most of the 3,838 Salmonella enterica serovar Typhimurium promoters in jus
206 create FLIM-phasor maps of Escherichia coli, Salmonella enterica serovar Typhimurium, Pseudomonas aer
207 ntroduction of the tviA gene in nontyphoidal Salmonella enterica serovar Typhimurium reduced flagelli
211 in the gut by the enteropathogenic bacterium Salmonella enterica serovar Typhimurium requires a T6SS
213 ly showed that l-asparaginase II produced by Salmonella enterica serovar Typhimurium (S Typhimurium)
214 BA would be more resistant to infection with Salmonella enterica serovar Typhimurium (S Typhimurium).
218 udies have shown that the enteric bacterium, Salmonella enterica serovar Typhimurium (S. Typhimurium)
219 ody directed against the O antigen (O-Ag) of Salmonella enterica serovar Typhimurium (S. Typhimurium)
220 pression limits laboratory grown cultures of Salmonella enterica serovar typhimurium (S. typhimurium)
221 ow that two antibiotic-associated pathogens, Salmonella enterica serovar Typhimurium (S. typhimurium)
222 nse during acute infection with the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium)
223 phenomenon of persister cells and models of Salmonella enterica serovar Typhimurium (S. Typhimurium)
224 pathogens, including the bacterial pathogen Salmonella enterica serovar Typhimurium (S. typhimurium)
225 iology, metabolism, and molecular biology of Salmonella enterica serovar Typhimurium (S. Typhimurium)
226 lamine) confers a marked growth advantage on Salmonella enterica serovar Typhimurium (S. Typhimurium)
227 uantification of the replication dynamics of Salmonella enterica serovar Typhimurium (S. Typhimurium)
228 n significant impairment of the virulence of Salmonella enterica serovar Typhimurium (S. Typhimurium)
230 w here that the important foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium)
231 d persisted in tissues of mice infected with Salmonella enterica serovar Typhimurium (S. Typhimurium)
234 thogenesis is based on research conducted on Salmonella enterica serovar Typhimurium, S. Enteritidis
235 he effects of autophagy gene inactivation on Salmonella enterica Serovar Typhimurium (Salmonella typh
236 asion assays with Listeria monocytogenes and Salmonella enterica serovar Typhimurium (Salmonella typh
241 ownstream of the translocation domain of the Salmonella enterica serovar Typhimurium sopE gene in the
243 (TCA) cycle operates as a full cycle during Salmonella enterica serovar Typhimurium SR-11 peroral in
248 ptional programme and metabolomic profile of Salmonella enterica serovar Typhimurium ST4/74 were comp
250 tenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain chi9447.
252 antigen from Mycobacterium tuberculosis, in Salmonella enterica serovar Typhimurium strain SL3261.
255 ewly developed regulated delayed attenuation Salmonella enterica serovar Typhimurium strains chi9088
256 r N2 worms grown on mixed lawns of bacteria, Salmonella enterica serovar Typhimurium substantially ou
257 h phenotypic changes in Escherichia coli and Salmonella enterica serovar Typhimurium, suggesting that
258 ecific MerR family regulator named GolS from Salmonella enterica serovar Typhimurium that controls th
259 sine harbors bacteriostatic activity against Salmonella enterica serovar Typhimurium that is not shar
261 popolysaccharide (LPS) modification genes in Salmonella enterica serovar Typhimurium, the etiologic a
263 To examine individual functions, strains of Salmonella enterica serovar Typhimurium, the murine mode
265 egulatory system coordinates the response of Salmonella enterica serovar Typhimurium to diverse envir
266 njugative HGT of the colicin-plasmid p2 from Salmonella enterica serovar Typhimurium to E. coli.
267 he current study, we examined the ability of Salmonella enterica serovar Typhimurium to infect the ce
268 bound in vivo by the CspA family members of Salmonella enterica serovar Typhimurium to link the cons
269 olymerase is essential for the resistance of Salmonella enterica serovar Typhimurium to RNS in a muri
270 uptake regulator (Fur) in the resistance of Salmonella enterica serovar Typhimurium to the reactive
271 urrounding swarming and nonswarming cells of Salmonella enterica serovar Typhimurium to wet a nonpola
273 ed 129X1/SvJ mice provide a natural model of Salmonella enterica serovar Typhimurium transmission.
275 t are not permissive for secretion through a Salmonella enterica serovar Typhimurium type III secreti
277 but is present in the highly invasive strain Salmonella enterica serovar Typhimurium UK-1 (stands for
279 y overexpressing the caf operon in wild-type Salmonella enterica serovar Typhimurium under a potent p
281 Here we show that the intestinal pathogen Salmonella enterica serovar Typhimurium uses specialized
284 efficacy of a sopB deletion mutation on two Salmonella enterica serovar Typhimurium vaccine strains
286 reover, the ZupT transporter is required for Salmonella enterica serovar Typhimurium virulence in Nra
287 , the interaction between FlgM and FliS from Salmonella enterica serovar Typhimurium was characterize
288 pontaneous sepsis and on oral infection with Salmonella enterica serovar Typhimurium was examined.
289 instance, pigs experimentally infected with Salmonella enterica serovar Typhimurium was investigated
290 In vitro mutational and genetic screening in Salmonella enterica serovar Typhimurium was performed in
291 the FlgE (flagellar hook subunit) protein in Salmonella enterica serovar Typhimurium was posttranscri
292 l pathogens, Salmonella enterocolitis (using Salmonella enterica serovar Typhimurium) was induced in
293 hput assay for type III protein secretion in Salmonella enterica serovar Typhimurium, we discovered t
295 urported trimeric autotransporter adhesin of Salmonella enterica serovar Typhimurium, were examined.
296 possesses genes related to the lsr operon of Salmonella enterica serovar Typhimurium which function t
297 report that the Mg(2+) channel gene corA in Salmonella enterica serovar Typhimurium, which was previ
299 n of conserved genes in the PhoPQ regulon of Salmonella enterica serovar Typhimurium with that of Pho
300 nd O-antigen, is a major virulence factor of Salmonella enterica serovar Typhimurium, with lipid A be
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。