戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 Gram negative bacteria (Escherichia coli and Salmonella enterica serovar Typhimurium).
2 d by enteric bacteria Citrobacter koseri and Salmonella enterica serovar typhimurium.
3 activate a periplasmic Cu,Zn-SOD (SodCII) in Salmonella enterica serovar Typhimurium.
4 -like cells are required for defense against Salmonella enterica serovar Typhimurium.
5 fy mechanisms of persistence in the pathogen Salmonella enterica serovar Typhimurium.
6 +) homeostasis in the Gram-negative pathogen Salmonella enterica serovar Typhimurium.
7 proportion of these infections are caused by Salmonella enterica serovar Typhimurium.
8  QseC activates virulence gene expression in Salmonella enterica serovar Typhimurium.
9 physiological analyses of a 2-h lag phase in Salmonella enterica serovar Typhimurium.
10          CDGA activity was first tested with Salmonella enterica serovar Typhimurium.
11 t bacterial surface antigens associated with Salmonella enterica Serovar Typhimurium.
12 r (P(class2)) gene expression to assembly in Salmonella enterica serovar Typhimurium.
13 ation as inhibitors of type III secretion in Salmonella enterica serovar Typhimurium.
14 t intracellular states of the model pathogen Salmonella enterica serovar Typhimurium.
15 t doses that did not affect the viability of Salmonella enterica serovar Typhimurium.
16 he primary source of intracellular Mg(2+) in Salmonella enterica serovar Typhimurium.
17        CorA is the primary Mg(2+) channel in Salmonella enterica serovar Typhimurium.
18 thologs OmpT in Escherichia coli and PgtE in Salmonella enterica serovar Typhimurium.
19 ine on the transcriptome of the gut pathogen Salmonella enterica serovar Typhimurium.
20 helial oxygenation, and aerobic expansion of Salmonella enterica serovar Typhimurium.
21 ng activity of macrophages against wild-type Salmonella enterica serovar Typhimurium.
22  injection of the viral genome into the host Salmonella enterica serovar Typhimurium.
23 atory properties of this signaling system in Salmonella enterica serovar Typhimurium.
24 nt decrease in survival when challenged with Salmonella enterica serovar Typhimurium.
25  and related enteric bacteria but differs in Salmonella enterica serovar Typhimurium.
26 ts its 43 kbp genome across the cell wall of Salmonella enterica serovar Typhimurium.
27 e a large set of genes affecting motility in Salmonella enterica serovar Typhimurium.
28 taxis, is essential for swarming motility in Salmonella enterica serovar Typhimurium.
29 me responsible for aerobic NO. metabolism by Salmonella enterica serovar typhimurium.
30  identifying mutations in the MEP pathway of Salmonella enterica serovar Typhimurium.
31 odes the major component of the flagellum in Salmonella enterica serovar Typhimurium.
32 diating resistance to Fe(III) and Al(III) in Salmonella enterica serovar Typhimurium.
33 oQ in the facultative intracellular pathogen Salmonella enterica serovar Typhimurium.
34 charide stimulation or upon coinfection with Salmonella enterica serovar Typhimurium.
35 en Vibrio cholerae and the invasive pathogen Salmonella enterica serovar Typhimurium.
36  of physiological and virulence functions in Salmonella enterica serovar Typhimurium.
37 anced susceptibility to hydrogen peroxide in Salmonella enterica serovar Typhimurium.
38 stinal inflammation during colitis caused by Salmonella enterica serovar Typhimurium.
39 Of the 102 typed NTS isolates, 40% (41) were Salmonella enterica serovar Typhimurium, 10% (10) were S
40 e with Plasmodium yoelii 17XNL (Py17XNL) and Salmonella enterica serovar Typhimurium 12023 (Salmonell
41                                    Wild-type Salmonella enterica serovar Typhimurium 14028s caused a
42                                    FrmR from Salmonella enterica serovar typhimurium (a CsoR/RcnR-lik
43                                              Salmonella enterica serovar Typhimurium, a common enteri
44 udy describes maturation processes in living Salmonella enterica serovar Typhimurium, a prevalent cau
45 ucidate the host transcriptional response to Salmonella enterica serovar Typhimurium, Affymetrix porc
46 scherichia coli, Yersinia enterocolitica and Salmonella enterica serovar Typhimurium (all gram-negati
47 533, following infection of macrophages with Salmonella enterica serovar Typhimurium (also known as S
48                                              Salmonella enterica serovar Typhimurium, an intracellula
49                                              Salmonella enterica serovar Typhimurium, an intracellula
50 o control infection by the enteric pathogens Salmonella enterica serovar Typhimurium and Citrobacter
51 ial amyloids using curli fibers, produced by Salmonella enterica serovar Typhimurium and Escherichia
52 ive infection with Pseudomonas aeruginosa or Salmonella enterica serovar Typhimurium and had no or a
53                    Bacteriophage P22 infects Salmonella enterica serovar Typhimurium and is a model f
54 charide (LPS) is a major virulence factor of Salmonella enterica serovar Typhimurium and is composed
55 ed IFN-gamma response following infection by Salmonella enterica serovar Typhimurium and Listeria mon
56 n important role in the host defense against Salmonella enterica serovar Typhimurium and perhaps othe
57               We have constructed attenuated Salmonella enterica serovar Typhimurium and Salmonella e
58  were found to be susceptible to invasion by Salmonella enterica serovar Typhimurium and Shigella fle
59  for autophagy of the intracellular pathogen Salmonella enterica serovar Typhimurium and show that th
60 t here that Fur is required for virulence in Salmonella enterica serovar Typhimurium and that Fur is
61 n in the Mg(2+)-sensing mgtA riboswitch from Salmonella enterica serovar Typhimurium and the flavin m
62  flexneri and other pathogens that use T3SS, Salmonella enterica serovar Typhimurium and Yersinia pse
63  Nontyphoidal Salmonella (NTS), particularly Salmonella enterica serovars Typhimurium and Enteritidis
64 sa, Staphylococcus aureus, Escherichia coli, Salmonella enterica serovar Typhimurium, and Salmonella
65               We report that cobC strains of Salmonella enterica serovar Typhimurium are impaired in
66                           Type I fimbriae in Salmonella enterica serovar Typhimurium are surface appe
67       Nontyphoidal salmonellae, particularly Salmonella enterica serovar Typhimurium, are a major cau
68 opological configuration is proposed for the Salmonella enterica serovar Typhimurium ArnT.
69 on with the intracellular bacterial pathogen Salmonella enterica serovar Typhimurium as shown by thei
70 Shigella flexneri and the vT3SS and fT3SS of Salmonella enterica serovar Typhimurium at ~5 and ~4 nm
71                                              Salmonella enterica serovar Typhimurium avoids clearance
72     The pattern of global gene expression in Salmonella enterica serovar Typhimurium bacteria harvest
73            Moreover, purified flagellin from Salmonella enterica serovar Typhimurium behaved like sam
74                      The food-borne pathogen Salmonella enterica serovar Typhimurium benefits from ac
75            For the human and animal pathogen Salmonella enterica serovar Typhimurium, biofilm formati
76 tein (ycfR) were specifically upregulated in Salmonella enterica serovar Typhimurium biofilms grown o
77                      In Escherichia coli and Salmonella enterica serovar Typhimurium, BipA has been i
78 sette transporters from several rhizobia and Salmonella enterica serovar Typhimurium, but not seconda
79   Here, we report that pyroptosis induced by Salmonella enterica serovar Typhimurium can be positivel
80                                              Salmonella enterica serovar Typhimurium can inject effec
81 ion system from the bacterial enteropathogen Salmonella enterica serovar Typhimurium can sort its sub
82                                              Salmonella enterica serovar Typhimurium can utilize mole
83                         Escherichia coli and Salmonella enterica serovar Typhimurium cannot synthesiz
84 he 50% lethal dose (LD(50)) or 10x LD(50) of Salmonella enterica serovar Typhimurium caused changes i
85                  The Gram-negative bacterium Salmonella enterica serovar Typhimurium causes a natural
86                         The enteric pathogen Salmonella enterica serovar Typhimurium causes food pois
87                                  Conversely, Salmonella enterica serovar Typhimurium causes gastroent
88 lness in humans, termed typhoid fever, while Salmonella enterica serovar Typhimurium causes localized
89    The Gram-negative intracellular bacterium Salmonella enterica serovar Typhimurium causes persisten
90                                              Salmonella enterica serovar Typhimurium causes typhoid-l
91                      Mice were infected with Salmonella enterica serovar typhimurium; cecum and small
92                                         Each Salmonella enterica serovar Typhimurium cell produces a
93                         We observed enhanced Salmonella enterica serovar Typhimurium colonization in
94 l compartments and a reduced ability to kill Salmonella enterica serovar Typhimurium compared to that
95                        The ST313 pathovar of Salmonella enterica serovar Typhimurium contributes to a
96 ighly conserved loop, (281)EFMPELKWS(289) in Salmonella enterica serovar Typhimurium CorA, is the onl
97                 We also demonstrate that the Salmonella enterica serovar Typhimurium core promoter is
98 inserts, we determined that infection with a Salmonella enterica serovar Typhimurium csgBA mutant, wh
99                                   Mutants of Salmonella enterica serovar Typhimurium deficient in DNA
100                                              Salmonella enterica serovar Typhimurium definitive phage
101 gions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.
102 d ProU transporter from Escherichia coli and Salmonella enterica serovar Typhimurium did not function
103 toxified outer membrane vesicles (OMVs) from Salmonella enterica serovar Typhimurium displaying the v
104 dentified the dissemination of two prevalent Salmonella enterica serovar Typhimurium DT104 clones in
105  provide an important colonization niche for Salmonella enterica serovar Typhimurium during gastroint
106  merozoite antigen EAMZ250 were fused to the Salmonella enterica serovar Typhimurium effector protein
107                                              Salmonella enterica serovar Typhimurium encodes two type
108 ic bacteria, either Klebsiella pneumoniae or Salmonella enterica serovar Typhimurium, enhanced transl
109                   A recent study showed that Salmonella enterica serovar Typhimurium exhibits sliding
110                   The Gram-negative pathogen Salmonella enterica serovar Typhimurium experiences a nu
111                                              Salmonella enterica serovar Typhimurium exploits actin d
112                                              Salmonella enterica serovar Typhimurium exploits the hos
113 ranasal immunization of mice with attenuated Salmonella enterica serovar Typhimurium expressing the O
114                                           In Salmonella enterica serovar Typhimurium, flagella-mediat
115 , we tested the immunoadjuvant properties of Salmonella enterica serovar Typhimurium flagellin (FliC)
116 fic monoclonal IgA, is a potent inhibitor of Salmonella enterica serovar Typhimurium flagellum-based
117                               Flagellin from Salmonella enterica serovar Typhimurium (FliC) can impac
118 on significantly attenuates the virulence of Salmonella enterica serovar Typhimurium following intrap
119 ite sequencing (TraDIS) to screen mutants of Salmonella enterica serovar Typhimurium for their abilit
120 enotyping methods to distinguish isolates of Salmonella enterica serovar Typhimurium from different f
121 ance of the Gram-negative bacterial pathogen Salmonella enterica serovar Typhimurium from macrophages
122 tracellular gram-negative bacterial pathogen Salmonella enterica serovar Typhimurium gains entry into
123 ur genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals
124                                              Salmonella enterica serovar Typhimurium harbors five pat
125 ugars on the virulence and immunogenicity of Salmonella enterica serovar Typhimurium has not been sys
126 e human chitotriosidase and a chitinase from Salmonella enterica serovar Typhimurium hydrolyze LacNAc
127 is the major regulator of LPS alterations in Salmonella enterica serovar Typhimurium, impaired growth
128 ed and surface-associated cell components of Salmonella enterica serovar Typhimurium, including O ant
129  and RcsC/YojN/RcsB two-component systems of Salmonella enterica serovar Typhimurium independently pr
130                  We found that intracellular Salmonella enterica serovar Typhimurium induced the binu
131  that TcpB protein can efficiently attenuate Salmonella enterica serovar Typhimurium-induced pyroptos
132                    Most 6N+ macrophages from Salmonella enterica serovar Typhimurium-infected mice co
133 n simultaneously in pathogen and host during Salmonella enterica serovar Typhimurium infection and re
134                                              Salmonella enterica serovar Typhimurium infection of imm
135 his study investigates the effect of peroral Salmonella enterica serovar Typhimurium infection on the
136                   CARD9 is suppressed during Salmonella enterica serovar Typhimurium infection, facil
137                               In contrast to Salmonella enterica serovar Typhimurium infection, which
138 R, a highly hydrophobic peptide expressed in Salmonella enterica serovar Typhimurium, inhibits growth
139 on contact with intestinal epithelial cells, Salmonella enterica serovar Typhimurium injects a set of
140 ty Island (SPI)-2 permitted the expansion of Salmonella enterica serovar Typhimurium into the intrace
141                                              Salmonella enterica serovar Typhimurium invade non-phago
142                                              Salmonella enterica serovar Typhimurium is a bacterial p
143                                              Salmonella enterica serovar Typhimurium is a common caus
144                                              Salmonella enterica serovar Typhimurium is a food-borne
145                                              Salmonella enterica serovar Typhimurium is a Gram-negati
146                                              Salmonella enterica serovar Typhimurium is a Gram-negati
147                                              Salmonella enterica serovar Typhimurium is a Gram-negati
148                                              Salmonella enterica serovar Typhimurium is a Gram-negati
149                                              Salmonella enterica serovar Typhimurium is a leading cau
150                                              Salmonella enterica serovar Typhimurium is a pathogen th
151                           Here, we show that Salmonella enterica serovar Typhimurium is able to adher
152                                              Salmonella enterica serovar Typhimurium is able to resis
153   Invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium is an energetica
154                                              Salmonella enterica serovar Typhimurium is an enteropath
155                                              Salmonella enterica serovar Typhimurium is an intracellu
156 h of the in vivo innate immune resistance of Salmonella enterica serovar Typhimurium is attributed to
157 expression of the Mg(2+) transporter MgtA of Salmonella enterica serovar Typhimurium is controlled by
158         The production of type 1 fimbriae in Salmonella enterica serovar Typhimurium is controlled, i
159 very of putative iron efflux transporters in Salmonella enterica serovar Typhimurium is discussed in
160     We now report that RpoS accumulates when Salmonella enterica serovar Typhimurium is growing logar
161 e invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium is mediated by a
162 ism for enforcing this temporal hierarchy in Salmonella enterica serovar Typhimurium is the sigma(28)
163 tedly, the allosteric mechanism of FrmR from Salmonella enterica serovar Typhimurium is triggered by
164                                              Salmonella enterica serovar Typhimurium isolates are res
165         We applied the algorithm to a set of Salmonella enterica serovar Typhimurium isolates collect
166                                    Sixty-one Salmonella enterica serovar Typhimurium isolates of anim
167 ty testing and multilocus sequence typing on Salmonella enterica serovar Typhimurium isolates was per
168                    Macrophage recognition of Salmonella enterica serovar Typhimurium leads to a casca
169                                          The Salmonella enterica serovar Typhimurium lipopolysacchari
170               We identified a homolog of the Salmonella enterica serovar Typhimurium lipoprotein (lpp
171  inhibits the peptide hydrolysis activity of Salmonella enterica serovar Typhimurium Lon.
172  the rabbit ileal loop model inoculated with Salmonella enterica serovar Typhimurium LPS.
173                                The genome of Salmonella enterica serovar Typhimurium LT2 encodes 26 G
174                                   Strains of Salmonella enterica serovar Typhimurium LT2 lacking a fu
175 milar to purified PDU microcompartments from Salmonella enterica serovar Typhimurium LT2 that were im
176 we demonstrate detection of genomic DNA from Salmonella enterica serovar Typhimurium LT2 with a limit
177 alis, Escherichia coli K12, E. coli O157:H7, Salmonella enterica serovar Typhimurium LT2, Staphylococ
178  adenosylcobalamin (coenzyme B12) pathway of Salmonella enterica serovar Typhimurium LT2.
179 te phosphatase (CobC; EC 3.1.3.73) enzyme of Salmonella enterica serovar Typhimurium LT2.
180                        The MgtA protein from Salmonella enterica serovar Typhimurium mediates Mg(2+)
181                    The melibiose permease of Salmonella enterica serovar Typhimurium (MelB(St)) catal
182 e of the Na(+)-coupled melibiose permease of Salmonella enterica serovar Typhimurium (MelBSt) demonst
183                                           In Salmonella enterica serovar Typhimurium, Mg(2+) limitati
184                    To infect an animal host, Salmonella enterica serovar Typhimurium must penetrate t
185                                              Salmonella enterica serovar Typhimurium must successfull
186 ed a metabolically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its a
187                                The growth of Salmonella enterica serovar Typhimurium mutants lacking
188 LPS mutants, which are derived from E. coli, Salmonella enterica serovar Typhimurium, Neisseria gonor
189 srR target is inactivated by mutation at the Salmonella enterica serovar Typhimurium nrf promoter.
190 prising two and three O-antigen repeats from Salmonella enterica serovar Typhimurium: octasaccharide
191 o the secretion and translocation signals of Salmonella enterica serovar Typhimurium of the type III
192 eria monocytogenes but not vacuole-localized Salmonella enterica serovar Typhimurium or extracellular
193 her structure of CMV, adenovirus serotype 2, Salmonella enterica serovar Typhimurium, or of cells use
194 nterohemorrhagic Escherichia coli (EHEC) and Salmonella enterica serovar Typhimurium, or the surrogat
195           A total of 190 isolates from eight Salmonella enterica serovar Typhimurium outbreaks and 15
196 ein translocases SipB, SipC, and SipD of the Salmonella enterica serovar Typhimurium pathogenicity is
197                          Here we report that Salmonella enterica serovar Typhimurium pathogenicity is
198 we present the structure of the prototypical Salmonella enterica serovar Typhimurium pathogenicity is
199 cted targets in other bacteria, specifically Salmonella enterica serovar Typhimurium, Pectobacterium
200                                          The Salmonella enterica serovar Typhimurium PhoP/PhoQ system
201                        Here we show that the Salmonella enterica serovar Typhimurium PhoQ sensor kina
202                                              Salmonella enterica serovar Typhimurium possesses a stim
203                         The enteric pathogen Salmonella enterica serovar Typhimurium possesses four f
204            The PhoPQ two-component system of Salmonella enterica serovar Typhimurium produces a remod
205  were combined to identify most of the 3,838 Salmonella enterica serovar Typhimurium promoters in jus
206 create FLIM-phasor maps of Escherichia coli, Salmonella enterica serovar Typhimurium, Pseudomonas aer
207 ntroduction of the tviA gene in nontyphoidal Salmonella enterica serovar Typhimurium reduced flagelli
208                                           In Salmonella enterica serovar Typhimurium, removal of the
209                                              Salmonella enterica serovar Typhimurium replicates in ma
210                                              Salmonella enterica serovar Typhimurium replicates withi
211 in the gut by the enteropathogenic bacterium Salmonella enterica serovar Typhimurium requires a T6SS
212                   The intracellular pathogen Salmonella enterica serovar Typhimurium requires the mgt
213 ly showed that l-asparaginase II produced by Salmonella enterica serovar Typhimurium (S Typhimurium)
214 BA would be more resistant to infection with Salmonella enterica serovar Typhimurium (S Typhimurium).
215                                              Salmonella enterica serovar Typhimurium (S.
216 wo intracellular [Listeria monocytogenes and Salmonella enterica serovar Typhimurium (S.
217 facultative intracellular bacterial pathogen Salmonella enterica serovar Typhimurium (S.
218 udies have shown that the enteric bacterium, Salmonella enterica serovar Typhimurium (S. Typhimurium)
219 ody directed against the O antigen (O-Ag) of Salmonella enterica serovar Typhimurium (S. Typhimurium)
220 pression limits laboratory grown cultures of Salmonella enterica serovar typhimurium (S. typhimurium)
221 ow that two antibiotic-associated pathogens, Salmonella enterica serovar Typhimurium (S. typhimurium)
222 nse during acute infection with the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium)
223  phenomenon of persister cells and models of Salmonella enterica serovar Typhimurium (S. Typhimurium)
224  pathogens, including the bacterial pathogen Salmonella enterica serovar Typhimurium (S. typhimurium)
225 iology, metabolism, and molecular biology of Salmonella enterica serovar Typhimurium (S. Typhimurium)
226 lamine) confers a marked growth advantage on Salmonella enterica serovar Typhimurium (S. Typhimurium)
227 uantification of the replication dynamics of Salmonella enterica serovar Typhimurium (S. Typhimurium)
228 n significant impairment of the virulence of Salmonella enterica serovar Typhimurium (S. Typhimurium)
229                                              Salmonella enterica serovar Typhimurium (S. typhimurium)
230 w here that the important foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium)
231 d persisted in tissues of mice infected with Salmonella enterica serovar Typhimurium (S. Typhimurium)
232                                              Salmonella enterica serovar Typhimurium (S. Typhimurium)
233                                              Salmonella enterica serovar Typhimurium (S. typhimurium)
234 thogenesis is based on research conducted on Salmonella enterica serovar Typhimurium, S. Enteritidis
235 he effects of autophagy gene inactivation on Salmonella enterica Serovar Typhimurium (Salmonella typh
236 asion assays with Listeria monocytogenes and Salmonella enterica serovar Typhimurium (Salmonella typh
237       The intracellular pathogenic bacterium Salmonella enterica serovar typhimurium (Salmonella) rel
238                                  Salmonella (Salmonella enterica serovar Typhimurium) secrete numerou
239             In response to iron deprivation, Salmonella enterica serovar Typhimurium secretes two cat
240                         Escherichia coli and Salmonella enterica serovar Typhimurium share high degre
241 ownstream of the translocation domain of the Salmonella enterica serovar Typhimurium sopE gene in the
242                       The mgtCBR operon from Salmonella enterica serovar Typhimurium specifies the vi
243  (TCA) cycle operates as a full cycle during Salmonella enterica serovar Typhimurium SR-11 peroral in
244               Previously, we showed that the Salmonella enterica serovar Typhimurium SR-11 tricarboxy
245                                              Salmonella enterica serovar Typhimurium (ST) sense Toll-
246                We have previously shown that Salmonella enterica serovar Typhimurium (ST), a leading
247 have not been investigated in the context of Salmonella enterica serovar Typhimurium (ST).
248 ptional programme and metabolomic profile of Salmonella enterica serovar Typhimurium ST4/74 were comp
249         To evade host resistance mechanisms, Salmonella enterica serovar Typhimurium (STM), a faculta
250 tenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain chi9447.
251                  We genetically engineered a Salmonella enterica serovar Typhimurium strain of multil
252  antigen from Mycobacterium tuberculosis, in Salmonella enterica serovar Typhimurium strain SL3261.
253               In this work, we constructed a Salmonella enterica serovar Typhimurium strain that synt
254                                          The Salmonella enterica serovar Typhimurium strain UK-1 exhi
255 ewly developed regulated delayed attenuation Salmonella enterica serovar Typhimurium strains chi9088
256 r N2 worms grown on mixed lawns of bacteria, Salmonella enterica serovar Typhimurium substantially ou
257 h phenotypic changes in Escherichia coli and Salmonella enterica serovar Typhimurium, suggesting that
258 ecific MerR family regulator named GolS from Salmonella enterica serovar Typhimurium that controls th
259 sine harbors bacteriostatic activity against Salmonella enterica serovar Typhimurium that is not shar
260                                              Salmonella enterica serovar Typhimurium that lacks the D
261 popolysaccharide (LPS) modification genes in Salmonella enterica serovar Typhimurium, the etiologic a
262                      Unlike the nontyphoidal Salmonella enterica serovar Typhimurium, the genomes of
263  To examine individual functions, strains of Salmonella enterica serovar Typhimurium, the murine mode
264                                     However, Salmonella enterica serovar Typhimurium thrives in the i
265 egulatory system coordinates the response of Salmonella enterica serovar Typhimurium to diverse envir
266 njugative HGT of the colicin-plasmid p2 from Salmonella enterica serovar Typhimurium to E. coli.
267 he current study, we examined the ability of Salmonella enterica serovar Typhimurium to infect the ce
268  bound in vivo by the CspA family members of Salmonella enterica serovar Typhimurium to link the cons
269 olymerase is essential for the resistance of Salmonella enterica serovar Typhimurium to RNS in a muri
270  uptake regulator (Fur) in the resistance of Salmonella enterica serovar Typhimurium to the reactive
271 urrounding swarming and nonswarming cells of Salmonella enterica serovar Typhimurium to wet a nonpola
272                                              Salmonella enterica serovar typhimurium translocates a g
273 ed 129X1/SvJ mice provide a natural model of Salmonella enterica serovar Typhimurium transmission.
274                                           In Salmonella enterica serovar Typhimurium, trxA encodes th
275 t are not permissive for secretion through a Salmonella enterica serovar Typhimurium type III secreti
276       We define YvyG as an orthologue of the Salmonella enterica serovar Typhimurium type III secreti
277 but is present in the highly invasive strain Salmonella enterica serovar Typhimurium UK-1 (stands for
278 otility of the poorly motile yhjH mutants of Salmonella enterica serovar Typhimurium UMR1.
279 y overexpressing the caf operon in wild-type Salmonella enterica serovar Typhimurium under a potent p
280                                  Conversely, Salmonella enterica serovar Typhimurium uses a T3SS enco
281    Here we show that the intestinal pathogen Salmonella enterica serovar Typhimurium uses specialized
282                                              Salmonella enterica serovar Typhimurium uses the Salmone
283                                              Salmonella enterica serovar Typhimurium utilizes molecul
284  efficacy of a sopB deletion mutation on two Salmonella enterica serovar Typhimurium vaccine strains
285         We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for ant
286 reover, the ZupT transporter is required for Salmonella enterica serovar Typhimurium virulence in Nra
287 , the interaction between FlgM and FliS from Salmonella enterica serovar Typhimurium was characterize
288 pontaneous sepsis and on oral infection with Salmonella enterica serovar Typhimurium was examined.
289  instance, pigs experimentally infected with Salmonella enterica serovar Typhimurium was investigated
290 In vitro mutational and genetic screening in Salmonella enterica serovar Typhimurium was performed in
291 the FlgE (flagellar hook subunit) protein in Salmonella enterica serovar Typhimurium was posttranscri
292 l pathogens, Salmonella enterocolitis (using Salmonella enterica serovar Typhimurium) was induced in
293 hput assay for type III protein secretion in Salmonella enterica serovar Typhimurium, we discovered t
294                Listeria monocytogenes V7 and Salmonella enterica serovar Typhimurium were used as mod
295 urported trimeric autotransporter adhesin of Salmonella enterica serovar Typhimurium, were examined.
296 possesses genes related to the lsr operon of Salmonella enterica serovar Typhimurium which function t
297  report that the Mg(2+) channel gene corA in Salmonella enterica serovar Typhimurium, which was previ
298 cells (hIPSCs) to explore the interaction of Salmonella enterica serovar Typhimurium with iHOs.
299 n of conserved genes in the PhoPQ regulon of Salmonella enterica serovar Typhimurium with that of Pho
300 nd O-antigen, is a major virulence factor of Salmonella enterica serovar Typhimurium, with lipid A be

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top