戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (left1)

通し番号をクリックするとPubMedの該当ページを表示します
1                                              UDP-GlcNAc 2-epimerase and GlcNAc 2-epimerase are two en
2                                              UDP-GlcNAc 2-epimerase enzymes have been shown to be req
3                                              UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the
4                                              UDP-GlcNAc acyltransferase (LpxA) catalyzes the first st
5                                              UDP-GlcNAc and UDP-ManNAcA biosynthesis evolved early in
6                                              UDP-GlcNAc is also utilized as substrate for the glycosy
7                                              UDP-GlcNAc is the donor substrate used in multiple glyco
8                                              UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase
9                                              UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosph
10                                              UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosph
11                                              UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosph
12 tein still cross-linked the radioactive N(3)-UDP-GlcNAc although not nearly as well as the wild type.
13 diolabeled [3H]UDP-N-acetylglucosaminyl ([3H]UDP-GlcNAc).
14 rnative methods to rapidly separate free [3H]UDP-GlcNAc from 3H-p62ST acceptor peptide (trichloroacet
15 oli indicated that it does not function as a UDP-GlcNAc/UDP-GalNAc epimerase.
16 he (metal-independent) GT-B fold and binds a UDP-GlcNAc analogue at the bottom of a highly conserved
17 n GPI anchors indicated that TbGT8 encodes a UDP-GlcNAc: beta-Gal-GPI beta1-3 GlcNAc transferase.
18 st, key catalytic domain residues and even a UDP-GlcNAc oxygen important for Ser/Thr glycosylation ar
19  recently shown, unexpectedly, to occur in a UDP-GlcNAc-dependent fashion within the transferase acti
20 nd GlcNAc2 as well, as GlcNAc acceptors in a UDP-GlcNAc-dependent glycosyltransfer reaction.
21  and CD II, contribute to the formation of a UDP-GlcNAc-binding pocket that catalyzes the transfer of
22 ticular, the E. coli encoded WecA protein, a UDP-GlcNAc: undecaprenylphosphate GlcNAc-1-phosphate tra
23       Transformation of these strains with a UDP-GlcNAc transporter and screening of a GnTI leader fu
24 ferase motif with alanine residues abolished UDP-GlcNAc binding and lymphostatin activity, although o
25                     UDP-N-acetylglucosamine (UDP-GlcNAc) acyltransferase (LpxA) catalyzes the first s
26 ized facilitator of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) t
27 ith uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) as a starting point, two enzymes of the gene
28 preferably utilizes UDP-N-acetylglucosamine (UDP-GlcNAc) as a sugar donor.
29 c pathway, increase UDP-N-acetylglucosamine (UDP-GlcNAc) availability, and lead to modification of cy
30 nds uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) but not UDP-glucose (UDP-Glc).
31 s a uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) C4 epimerase, only the second microbial enzy
32 d to be involved in UDP-N-acetylglucosamine (UDP-GlcNAc) donor specificity.
33 tes uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) for glycan synthesis and O-linked GlcNAc (O-
34 he sugar nucleotide UDP-N-acetylglucosamine (UDP-GlcNAc) is an essential metabolite in both prokaryot
35  Uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) is the donor sugar substrate for OGT and its
36 The HBP end product UDP-N-acetylglucosamine (UDP-GlcNAc) is used in enzymatic post-translational modi
37  the HBP metabolite UDP-N-acetylglucosamine (UDP-GlcNAc) to CRPC-like cells significantly decreases c
38 tylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to serines and threonines of cytoplasmic, nu
39 ogenase, converting UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetyl-glucosaminuronic acid (UDP-G
40 g the conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetylglucosaminuronic acid (UDP-Gl
41  of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), a key precursor of LacNAc synthesis.
42 nal modification is UDP-N-acetylglucosamine (UDP-GlcNAc), a product of the hexosamine biosynthesis pa
43  of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a substrate for cellular glycosyltransferas
44 alactose (UDP-Gal), UDP-N-acetylglucosamine (UDP-GlcNAc), and UDP-glucuronic acid.
45 te uridine diphosphoryl-N-acetylglucosamine (UDP-GlcNAc), namely, a metal-binding site and glycosyl o
46 r, uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc), to the 6 position of the alpha-1-6 linked M
47 or, uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), was monitored by recording mass spectra wit
48 ith the cosubstrate UDP-N-acetylglucosamine (UDP-GlcNAc),O-linked-GlcNAc transferase (OGT) catalyzes
49 ase uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc).
50 cid (UDP-GlcUA) and UDP-N-acetylglucosamine (UDP-GlcNAc).
51  of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc).
52 nits in place of glucosamine, do not acylate UDP-GlcNAc.
53                        E. coli LpxA acylates UDP-GlcNAc and UDP-GlcNAc3N at comparable rates in vitro
54       Using the method of standard addition, UDP-GlcNAc concentrations were measured in deproteinized
55                       Thus, this Alg13-Alg14 UDP-GlcNAc transferase represents an unprecedented examp
56 ixed endpoint fluorometric method to analyze UDP-GlcNAc.
57 d Cap5O was assessed by incubating Cap5P and UDP-GlcNAc (to produce UDP-ManNAc), together with Cap5O,
58 s found to activate glutamine catabolism and UDP-GlcNAc-associated modules.
59           The K(m) values for UDP-GalNAc and UDP-GlcNAc are 131 microM and 137 microM, respectively.
60  it strongly reduced cellular UDP-GalNAc and UDP-GlcNAc pools.
61 erpart, can also interconvert UDP-GalNAc and UDP-GlcNAc.
62    Recently, cellular release of UDP-Glc and UDP-GlcNAc has been reported, but whether additional UDP
63 Gal and abnormally low levels of UDP-Glc and UDP-GlcNAc in the presence of galactose and that human G
64 uronan synthase (HAS) utilizes UDP-GlcUA and UDP-GlcNAc in the presence of Mg(2+) to form the GAG hya
65 hat utilizes UDP-glucuronic acid (GlcUA) and UDP-GlcNAc to synthesize HA.
66 abbit GlcNAc-TI complexed with manganese and UDP-GlcNAc.
67  mice, as well as glycolytic metabolites and UDP-GlcNAc levels in liver.
68 f the interaction was dependent on Mgat5 and UDP-GlcNAc levels.
69 e of human epimerase complexed with NADH and UDP-GlcNAc.
70                      Coexpression of SAS and UDP-GlcNAc 2-epimerase/ManNAc kinase, the bifunctional e
71 rbon tunicamine sugar motif from uridine and UDP-GlcNAc via uridine-5'-aldehyde and UDP-4-keto-6-ene-
72  can be prepared from commercially available UDP-GlcNAc by enzymatic conversion to UDP-MurNAc, which
73         EcLpxA does not discriminate between UDP-GlcNAc and UDP-GlcNAc3N; however, E. coli does not m
74 tudied here, each of which nonetheless binds UDP-GlcNAc.
75 limiting enzyme of sialic acid biosynthesis, UDP-GlcNAc 2-epimerase/ManNAc kinase.
76 Gne can catalyze the interconversion of both UDP-GlcNAc/GalNAc and UDP-Glc/Gal almost equally well.
77 e activity of wtOGT and OGT(C917A) with both UDP-GlcNAc and UDP-GlcNDAz.
78 ide chain against the uracil moiety of bound UDP-GlcNAc in the X-ray structure of Chlamydia trachomat
79  that makes critical interactions with bound UDP-GlcNAc and Mn(2+) ion in rabbit GlcNAc-TI.
80  a recent 3.0-A structure of LpxA with bound UDP-GlcNAc.
81 pletely eliminated UDP-GalNAc synthesis, but UDP-GlcNAc was only diminished by 50%.
82        GFAT2 was modestly inhibited (15%) by UDP-GlcNAc but not through detectable O-glycosylation.
83 cific recognition of lysosomal hydrolases by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosph
84 ltransferase-catalyzed reactions mediated by UDP-GlcNAc:GlcNAc-P-P-Dol N-acetylglucosaminyltransferas
85 sphorylation of N-linked oligosaccharides by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosph
86 s purified and shown to efficiently catalyze UDP-GlcNAc oxidation, forming one NADH equivalent.
87 h-throughput analysis of changes in cellular UDP-GlcNAc concentrations in time series experiments or
88  coli O86:B7 to those of other characterized UDP-GlcNAc/Glc 4-epimerases indicated that it has relaxe
89 ly the BAS5304-encoded protein could convert UDP-GlcNAc to UDP-GalNAc, indicating that BAS5304 was th
90 even different enzymes that together convert UDP-GlcNAc to CMP-pseudaminic acid.
91 s of the reaction showed that WbpM converted UDP-GlcNAc completely to what was shown to be its 4-keto
92 alic acid biosynthetic pathway by converting UDP-GlcNAc to N-acetylmannosamine are described in this
93 curs via nucleophilic attack of deprotonated UDP-GlcNAc on the acyl donor in a general base-catalyzed
94 pimerase assay, Lec3 cells had no detectable UDP-GlcNAc 2-epimerase activity, and Lec3 cells grown in
95 ains strongly bound NADP(+) and has distinct UDP-GlcNAc 4-oxidase, 5,6-dehydratase, and 4-reductase a
96 n mutant and that BRE-5 encodes the dominant UDP-GlcNAc:Man GlcNAc transferase activity in C. elegans
97 ine (GlcNAc) from the nucleotide sugar donor UDP-GlcNAc to serine or threonine residues of protein su
98 Escherichia coli hydrolyzed the sugar donor, UDP-GlcNAc, while the mutant OGTs that did not fully res
99 , ED(50) = 80 microm) could markedly elevate UDP-GlcNAc levels without increasing GlcN-6-P levels or
100  in the peptide almost completely eliminated UDP-GlcNAc and UDP-GalNAc synthesis, while mutation of G
101                     Only a Gne cDNA encoding UDP-GlcNAc 2-epimerase:ManNAc kinase rescued PSA synthes
102 specific knockout of the Mgat2 gene encoding UDP-GlcNAc:alpha-6-d-mannoside beta-1,2-N-acetylglucosam
103 d for the multistep conversion of endogenous UDP-GlcNAc to CMP-Neu5Ac.
104 NGc, which might compete with the endogenous UDP-GlcNAc for the sialic acid biosynthetic pathway.
105 by the inhibition of the bifunctional enzyme UDP-GlcNAc-2-epimerase/ManNAc kinase.
106                             The Golgi enzyme UDP-GlcNAc:lysosomal enzymeN-acetylglucosamine-1-phospho
107 diphosphate-N-acetylglucosamine 2-epimerase (UDP-GlcNAc 2-epimerase) by cytidine monophosphate-N-acet
108           Yeast mutants lacking Yea4 (the ER UDP-GlcNAc transporter endogenously expressed in Sacchar
109 lase (UAP) is the final enzyme in eukaryotic UDP-GlcNAc biosynthesis, converting UTP and N-acetylgluc
110 Escherichia coli, recombinant GnT51 exhibits UDP-GlcNAc:hydroxyproline Skp1 GlcNAc-transferase activi
111 ly corrected UDP-Glc and, to a lesser extent UDP-GlcNAc depletion, enabled ldlD cells to proliferate
112 We describe the synthesis of two fluorescent UDP-GlcNAc analogues and their evaluation as chitin synt
113 nd approximately 20-fold higher affinity for UDP-GlcNAc than MGAT5, respectively, and increasing MGAT
114   A sensitive and highly selective assay for UDP-GlcNAc mass was developed using purified AGX2, an is
115                                The genes for UDP-GlcNAc-2-epimerase/ManNAc kinase (EK), sialic acid 9
116 1.2 microM for Nup 62; K(m) = 0.5 microM for UDP-GlcNAc) are nearly identical to purified mammalian O
117 detection in negative mode was optimized for UDP-GlcNAc, UDP-MurNAc, UDP-MurNAc-L-Ala, UDP-MurNAc-L-A
118 ions in the de novo biosynthetic pathway for UDP-GlcNAc.
119 -acetylglucosamine (GlcNAc), a precursor for UDP-GlcNAc, to the media increased the levels of CMP-Neu
120                                    Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase (GNE) beyond cont
121 i (EcLpxA), an acyltransferase selective for UDP-GlcNAc and R-3-hydroxymyristoyl-acyl carrier protein
122 pproximately 2-4 times higher than those for UDP-GlcNAc and UDP-Glc, suggesting that Gne is slightly
123                  The K(m) values of TviB for UDP-GlcNAc and NAD(+) are 77 +/- 9 microM and 276 +/- 52
124 inant OGT has three distinct K(m) values for UDP-GlcNAc and that UDP-GlcNAc concentrations modulates
125  by the observation that K(m,app) values for UDP-GlcNAc varied considerably (from 1 muM to over 20 mu
126  ER, which catalyzes transfer of GlcNAc from UDP-GlcNAc to an acceptor phosphatidylinositol, the firs
127        Chitin synthases transfer GlcNAc from UDP-GlcNAc to preexisting chitin chains in reactions tha
128 -GlcNAc-T2 efficiently transfers GlcNAc from UDP-GlcNAc to synthetic peptides corresponding to mucin-
129 ansferring N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to N-glycan substrates produced by the sequen
130 ransfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to Ser/Thr residues of proteins.
131 charide beta-N-GlcNAc (O-GlcNAcylation) from UDP-GlcNAc by the enzyme O-GlcNAc transferase.
132 acNAc) units within N-glycans initiated from UDP-GlcNAc by the medial-Golgi branching enzymes as well
133 a-d-glucosaminyl l-malate (GlcN-malate) from UDP-GlcNAc and l-malate.
134 wo enzymes capable of generating ManNAc from UDP-GlcNAc and GlcNAc, respectively.
135  that catalyzes the formation of ManNAc from UDP-GlcNAc via a 2-acetamidoglucal intermediate.
136 for transferring a single GlcNAc moiety from UDP-GlcNAc to specific serine/threonine residues of hund
137 e polymerization of the monosaccharides from UDP-GlcNAc and UDP-GlcUA.
138 eucine turns the sugar donor preference from UDP-GlcNAc to UDP-glucose.
139 ond step in the synthesis of UDP-QuiNAc from UDP-GlcNAc.
140 and WbpI) in a stepwise manner starting from UDP-GlcNAc.
141 P-4-amino-sugar was readily synthesized from UDP-GlcNAc in a coupled reaction using PglF and PglE.
142   The Km values of Gne for UDP-Glc, UDP-Gal, UDP-GlcNAc, and UDP-GalNAc are 370, 295, 323, and 373 mi
143                  TbNST1/2 transports UDP-Gal/UDP-GlcNAc, TbNST3 transports GDP-Man, and TbNST4 transp
144 ed with NADH and UDP-glucose, UDP-galactose, UDP-GlcNAc, or UDP-GalNAc.
145 u5Gc, CMP-KDN, UDP-Gal, UDP-Glc, UDP-GalNAc, UDP-GlcNAc, GDP-Fuc, GDP-Man) and 12 nucleotides (AMP, A
146 , this simple mutation did confer UDP-GalNAc/UDP-GlcNAc converting activity to the bacterial enzyme w
147 mately 2-5% of the total glucose, generating UDP-GlcNAc as the end product.
148 e acetylation of UDP-GlcNAc(3NH(2))A to give UDP-GlcNAc(3NAc)A.
149 glucosamine uridyltransferase (GlmU) to give UDP-GlcNAc/GalNAc.
150 nucleotide-sugar uridine-diphosphate-GlcNAc (UDP-GlcNAc) by deletion of the essential gene GNA1.
151 he condensation of UDP-N-acetyl glucosamine (UDP-GlcNAc) and phosphoenolpyruvate catalyzed by UDP-N-a
152  the conversion of UDP-N-acetyl glucosamine (UDP-GlcNAc) to UDP-N-acetylmannosamine (UDP-ManNAc).
153 e uridine 5'-diphospho-N-acetyl-glucosamine (UDP-GlcNAc) pathway, which provides intermediates for pe
154 6-dehydration of UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) to UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexu
155  uridine diphosphate N-acetyl-D-glucosamine (UDP-GlcNAc), forming a 3-hexulose sugar nucleotide.
156 ivity is seen with ADP-glucose, UDP-glucose, UDP-GlcNAc, or UDP-galactose.
157                                         GNE (UDP-GlcNAc 2-epimerase/ManNAc kinase) myopathy is a rare
158 d using purified AGX2, an isoenzyme of human UDP-GlcNAc pyrophosphorylase.
159                                    The human UDP-GlcNAc transporter HFRC1 was overexpressed in human
160                          UCE also hydrolyzes UDP-GlcNAc, a sugar donor for Golgi N-acetylglucosaminyl
161 ) and gneZ (BAS5117) encode nearly identical UDP-GlcNAc 2-epimerase enzymes that catalyze the reversi
162 an Escherichia coli rffE mutant defective in UDP-GlcNAc 2-epimerase activity.
163 e previously reported that mice deficient in UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase
164 ile and that Cys301 has an important role in UDP-GlcNAc binding by Gpi3ps.
165 tation is a novel mechanism for inactivating UDP-GlcNAc 2-epimerase activity.
166 e even in the presence of GlcN and increased UDP-GlcNAc.
167 Ac modification is not mediated by increased UDP-GlcNAc, the rate-limiting substrate for O-GlcNAcylat
168      As expected, GlcN and glucose increased UDP-GlcNAc levels (t((1/2)) approximately 14-18 min), bu
169       Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, inc
170 bility of the E. coli enzyme to interconvert UDP-GlcNAc and UDP-GalNAc.
171 h, converting D-glucosamine 1-phosphate into UDP-GlcNAc via acetylation and subsequent uridyl transfe
172  et al. report that increasing intracellular UDP-GlcNAc leads to increased branching of N-glycans, in
173 The method enabled mapping the (13)C-labeled UDP-GlcNAc in fungal mycelium and recording its redistri
174 ation and relative placement of its ligands, UDP-GlcNAc and beta-D-GlcpNAc-(1-->2)-alpha-D-Manp-(1-->
175 inhibits beta1,6GlcNAc branching by limiting UDP-GlcNAc supply to MGAT5, suggesting that restricted c
176  assay condition, the decrease in k(cat)/K(m,UDP-GlcNAc) mainly reflects an increased K(m,UDP-GlcNAc)
177 activity corresponds to decreased k(cat)/K(m,UDP-GlcNAc) values for all the mutants.
178 UDP-GlcNAc) mainly reflects an increased K(m,UDP-GlcNAc).
179 x and hybrid N-glycosylation requires MGAT1 (UDP-GlcNAc:alpha-3-D-mannoside-beta1,2-N-acetylglucosami
180 rocedure had a detection limit of 0.2 microM UDP-GlcNAc in a 1-ml sample.
181 zymes that affect this dynamic modification (UDP-GlcNAc:polypeptidtyltransferase and O-GlcNAcase), to
182 are engineered to produce diazirine-modified UDP-GlcNAc (UDP-GlcNDAz), and the diazirine-modified Glc
183                         Lec3 mutants with no UDP-GlcNAc 2-epimerase activity represent sensitive host
184 can interconvert UDP-Glc and UDP-Gal but not UDP-GlcNAc and UDP-GalNAc.
185 competitive with respect to acyl-ACP but not UDP-GlcNAc.
186 ll incorporated in patches in the absence of UDP-GlcNAc.
187 nfirm that WbpD catalyzes the acetylation of UDP-GlcNAc(3NH(2))A to give UDP-GlcNAc(3NAc)A.
188 t the enzyme also catalyzes the acylation of UDP-GlcNAc at a slow rate.
189 or R-3-hydroxylauroyl-ACP and an analogue of UDP-GlcNAc, designated UDP-GlcNAc3N, in which NH(2) repl
190                          The availability of UDP-GlcNAc correlates with glycosylation levels of intra
191 ated cells serves to enhance availability of UDP-GlcNAc to MGAT5.
192 e to accommodate the N-acetyl group on C2 of UDP-GlcNAc so that the anomeric carbon atom (C1) is opti
193 ely 50% lower intracellular concentration of UDP-GlcNAc and conferred a fivefold increase in the leve
194 hat a reduction in cellular concentration of UDP-GlcNAc and the resulting increased expression of Rra
195 d T cells contained higher concentrations of UDP-GlcNAc and increased intracellular protein O-GlcNAcy
196 and High Five cells showed concentrations of UDP-GlcNAc, UDP-Gal, UDP-Glc, GDP-Fuc, and GDP-Man equal
197 o fluctuations in cellular concentrations of UDP-GlcNAc, which result from nutrients entering the hex
198 s that catalyze the reversible conversion of UDP-GlcNAc and UDP-ManNAc.
199 mbiguously the dual enzymatic conversions of UDP-GlcNAc to UDP-GlcNAcA and subsequently to UDP-XylNAc
200 g the PKA activation results in depletion of UDP-GlcNAc for O-glycosylation.
201         Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O
202 S synthesis by inhibiting 4-epimerization of UDP-GlcNAc to UDP-GalNAc, thereby depleting one of the s
203 5 protein catalyzed the C-2 epimerization of UDP-GlcNAc, and the MMP0706 protein used NAD(+) to oxidi
204 fied O-GlcNAc by expressing a mutant form of UDP-GlcNAc pyrophosphorylase and subsequently culturing
205 ase, interacts with the 3'-hydroxyl group of UDP-GlcNAc to generate the nucleophile.
206 e acylation of the glucosamine 3-OH group of UDP-GlcNAc, using R-3-hydroxymyristoyl-acyl carrier prot
207 ier protein to the glucosamine 3-OH group of UDP-GlcNAc.
208  carrier protein to the 3'-hydroxyl group of UDP-GlcNAc.
209 otein (ACP) to the glucosamine 3-OH group of UDP-GlcNAc.
210 ugh the enzyme facilitated the hydrolysis of UDP-GlcNAc.
211 lcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis.
212 GT is exquisitely regulated by the levels of UDP-GlcNAc within the nucleus and cytoplasm.
213          GNE deficiency may affect levels of UDP-GlcNAc, a key metabolite in the nutrient-sensing hex
214  of Neu5Ac to CMP-Neu5Ac at higher levels of UDP-GlcNAc.
215 pendent oxidation of the glucosamine 3-OH of UDP-GlcNAc, and the 369-residue GnnB protein was propose
216 this catalytically productive orientation of UDP-GlcNAc but allows a more optimal alignment of UDP-Gl
217 initiated by the TviB-catalyzed oxidation of UDP-GlcNAc to UDP-GalNAc, followed by the TviC-catalyzed
218 ns-Golgi network may ensure that the pool of UDP-GlcNAc in the Golgi stack is not depleted, thereby m
219 both derived from the same metabolic pool of UDP-GlcNAc, without significant differential metabolic p
220 brium reaction resulting in a 70:30 ratio of UDP-GlcNAc to uridine diphosphate-N-acetylgalactosamine
221                                Redundancy of UDP-GlcNAc 2-epimerase function in S. aureus was demonst
222               Robust constitutive release of UDP-GlcNAc was observed in yeast as well as in well diff
223 e and hypotonic stress-stimulated release of UDP-GlcNAc.
224 ed by mutations in the alphabeta subunits of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosph
225 cted by the lack of ROCK1-mediated supply of UDP-GlcNAc.
226 ucose and glutamine for de novo synthesis of UDP-GlcNAc, a sugar-nucleotide that inhibits receptor en
227 s and studied the mitochondrial transport of UDP-GlcNAc.
228 ce of UGT3A1 is necessary for utilization of UDP-GlcNAc.
229                                        Other UDP-GlcNAc/GalNAc analogues can also be prepared dependi
230 ia coli, the human enzyme can also turn over UDP-GlcNAc to UDP-GalNAc and vice versa.
231  required for the conversion of [alpha-(32)P]UDP-GlcNAc to a novel, less negatively charged sugar nuc
232 ent sensing hexosamine biosynthetic pathway, UDP-GlcNAc, as its substrate donor.
233 of hGFAT1 by the end product of the pathway, UDP-GlcNAc, was competitive with a K(i) of 4 microm.
234 wn structure such as glycogen phosphorylase, UDP-GlcNAc 2-epimerase, and the glycosyl transferase Mur
235             Chitin synthase (CS) polymerizes UDP-GlcNAc to form chitin (poly-beta(1,4)-GlcNAc), a key
236                  Chitin synthase polymerizes UDP-GlcNAc to form chitin (poly-beta(1,4)-GlcNAc) and is
237 ylyltransferase reaction with UTP to produce UDP-GlcNAc.
238 tor pyridoxal 5'-phosphate (PLP) and product UDP-GlcNAc(3NH(2))A as the external aldimine at 1.9 A re
239 -6-P in addition to the pathway end product, UDP-GlcNAc.
240 to GlcNAc-1-PO(4) to form the final products UDP-GlcNAc and pyrophosphate.
241 strates of Eogt, that mutation of a putative UDP-GlcNAc binding DXD motif greatly reduces enzyme acti
242 iochemical characterization of a recombinant UDP-GlcNAc 2-epimerase encoded by S. aureus cap5P.
243 sis and glutaminolysis co-operatively reduce UDP-GlcNAc biosynthesis and N-glycan branching in mouse
244  in Saccharomyces cerevisiae) showed reduced UDP-GlcNAc release.
245 formation of spores in mother cells required UDP-GlcNAc 2-epimerase activity.
246 w that it encodes a Golgi apparatus resident UDP-GlcNAc:alpha3-D-mannoside beta1-2-N-acetylglucosamin
247 of endoplasmic reticulum (ER)/Golgi-resident UDP-GlcNAc transporters to the cellular release of their
248 rsor despite detection of only this enzyme's UDP-GlcNAc hydrolase activity.
249 eficient cells complemented with Yea4 showed UDP-GlcNAc release rates at levels similar to or higher
250  of the enzyme in complex with its substrate UDP-GlcNAc at 2.8 A resolution.
251 se WbpM had acted on the precursor substrate UDP-GlcNAc.
252  by GlcNAc-P-P-dolichol toward the substrate UDP-GlcNAc and non-competitive inhibition toward dolicho
253 ion, which was assigned a role in substrate (UDP-GlcNAc) binding.
254 istoyl)-GlcNAc and an alternative substrate, UDP-GlcNAc, demonstrates that the ester-linked R-3-hydro
255 sis of the nucleotide sugar donor substrate, UDP-GlcNAc, with the resulting generation of UMP, a pote
256 li MurG in complex with its donor substrate, UDP-GlcNAc.
257 nzyme (wtOGT) prefers the natural substrate, UDP-GlcNAc, over the unnatural UDP-GlcNDAz.
258 t it only polymerizes the native substrates, UDP-GlcNAc and UDP-GlcUA.
259 ors for the hexosamine pathway that supplies UDP-GlcNAc for synthesis of complex oligosaccharides.
260 id protein (57 kDa protein) also synthesizes UDP-GlcNAc at about 25% the rate of UDP-GalNAc.
261 distinct K(m) values for UDP-GlcNAc and that UDP-GlcNAc concentrations modulates the affinity of OGT
262                 Previously, we reported that UDP-GlcNAc: Galbeta1-3GalNAcalphaRbeta1-6-N-acetylglucos
263                                          The UDP-GlcNAc glycosyltransferase catalyzing the second sug
264 e reduced affinity of GlcNAc-TI for both the UDP-GlcNAc and Man(5)GlcNAc(2)Asn substrates.
265 viously characterized MNN2 gene encoding the UDP-GlcNAc Golgi transporter.
266 ously shown to contain the gene encoding the UDP-GlcNAc transporter; transformants were isolated, and
267 d effect on catalysis when inserted into the UDP-GlcNAc donor, with the UDP(5-F)-GlcNAc serving as a
268        Saccharomyces cerevisiae Gpi3p is the UDP-GlcNAc-binding and presumed catalytic subunit of the
269 nally, we identify several residues near the UDP-GlcNAc-binding site, which are specifically permissi
270 hibits the human ManNAc kinase domain of the UDP-GlcNAc-2-epimerase/ManNAc kinase.
271 fects enzyme activity and is proximal to the UDP-GlcNAc binding site.
272  in the second Rossmann domain points to the UDP-GlcNAc donor binding site.
273 s to increased GlcNH(2) 6-phosphate and then UDP-GlcNAc levels.
274 acetylglucosamine-1-phosphate (GlcNAc-1P) to UDP-GlcNAc.
275 ransferase pair that converts UDP-GlcNAcA to UDP-GlcNAc(3NH(2))A in a coupled reaction via a unique N
276 at5 expression and GlcNAc supplementation to UDP-GlcNAc, the donor substrate shared by Mgat branching
277 T cells is dependent on metabolite supply to UDP-GlcNAc biosynthesis (hexosamine pathway) and in turn
278 te, which are specifically permissive toward UDP-GlcNAc utilization.
279 vitro assay, we showed that TbGnTI transfers UDP-GlcNAc to biantennary Man3GlcNAc2, but not to triant
280 r, pyrimidine nucleotide carrier, transports UDP-GlcNAc from the cytosol to the inside of the mitocho
281 T3 transports GDP-Man, and TbNST4 transports UDP-GlcNAc, UDP-GalNAc, and GDP-Man.
282            Our results indicate that, unlike UDP-GlcNAc 2-epimerase, which promotes biosynthesis of s
283 ion is triggered by redistribution of unused UDP-GlcNAc from the medial to trans-Golgi via inter-cist
284 hown to undergo a conformational change upon UDP-GlcNAc binding, the kinetic data are inconsistent wi
285 rom two non-human primates were found to use UDP-GlcNAc, whereas UGT3A isoforms from non-primates cou
286 c and completely inhibits its ability to use UDP-GlcNAc.
287 transgenic overexpression of an enzyme using UDP-GlcNAc to modify proteins with O-GlcNAc produces the
288 rate analog for diverse enzymes that utilize UDP-GlcNAc.
289                O-GlcNAc transferase utilizes UDP-GlcNAc, the end product of hexosamine biosynthesis,
290 ed with a rat Gne cDNA had restored in vitro UDP-GlcNAc 2-epimerase activity and cell surface PSA exp
291                               In an in vitro UDP-GlcNAc 2-epimerase assay, Lec3 cells had no detectab
292 cNAcase) this sugar or by loading cells with UDP-GlcNAc.
293 ure of Escherichia coli GlmU in complex with UDP-GlcNAc and CoA has been determined to 2.1 A resoluti
294 ure of Escherichia coli LpxA in complex with UDP-GlcNAc reveals details of the substrate-binding site
295 osaccharides were efficiently elongated with UDP-GlcNAc as the donor substrate, confirming that CsaA
296  a broad area influence the interaction with UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosph
297  termination but rather by interference with UDP-GlcNAc synthesis.
298                 Similarly, cells loaded with UDP-GlcNAc had an attenuated response to uncaging of Ins
299 N-acetylglucosaminyltransferase (Mgat4) with UDP-GlcNAc.
300 way, the reaction of dolichol phosphate with UDP-GlcNAc to form N-acetylglucosaminylpyrophosphoryldol
301  and catalytic domains, which, together with UDP-GlcNAc, are required for both glycosylation and prot

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top