戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 le for instantaneous reaction with substrate UDP-N-acetylglucosamine.
2 the biosynthesis of this sugar starting from UDP-N-acetylglucosamine.
3 se, as well as UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine.
4  interconverts UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine.
5 he release of the second product enolpyruvyl-UDP-N-acetylglucosamine.
6 of substrates: UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine.
7 aving endogenous transport activity for only UDP- N-acetylglucosamine.
8 RNA), lipoprotein YceK, toxin HicA, or MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase) suppr
9    Construction of a defined mutation in the UDP-N-acetylglucosamine-1-phosphate transferase gene, we
10    Construction of a defined mutation in the UDP-N-acetylglucosamine-1-phosphate transferase gene, we
11 se-1-phosphate uridylyltransferase (galU), a UDP-N-acetylglucosamine 2-epimerase (wecB) and a UDP-N-a
12 gC, are shown by complementation to encode a UDP-N-acetylglucosamine 2-epimerase and a UDP-N-acetylma
13 ingle protein with key enzymatic activities, UDP-N-acetylglucosamine 2-epimerase and N-acetylmannosam
14  imply that the neuC gene product encodes an UDP-N-acetylglucosamine 2-epimerase that generates ManNA
15                                        Using UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine
16 synthesis of sialic acid is the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine
17 n N-acetylmannosamine kinase (MNK) domain of UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine
18  have cloned and expressed the gene encoding UDP-N-acetylglucosamine 3-O-acyltransferase of C. tracho
19                                              UDP-N-acetylglucosamine-3-O-acyltransferase (UDP-GlcNAc
20 ractions in the presence of 10 mM DTT, shows UDP-N-acetylglucosamine 6-dehydrogenase activity and is
21 n of glucosamine-1-P, UTP, and acetyl-CoA to UDP-N-acetylglucosamine, a fundamental precursor in bact
22                                              UDP-N-acetylglucosamine acyltransferase (LpxA) and UDP-3
23                                              UDP-N-acetylglucosamine acyltransferase (LpxA) and UDP-3
24                                              UDP-N-acetylglucosamine acyltransferase (LpxA) initiates
25            These acyl chains are attached by UDP-N-acetylglucosamine acyltransferase (LpxA).
26                        An lpxA gene encoding UDP-N-acetylglucosamine acyltransferase responsible for
27                 CtLpxA is the first reported UDP-N-acetylglucosamine acyltransferase that prefers a n
28 omplex of the acyltransferase protein, LpxA (UDP-N-acetylglucosamine acyltransferase), and acyl carri
29 lating the maturation of N-linked glycans is UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-a
30                     Here, the involvement of UDP-N-acetylglucosamine:alpha-6-D-mannoside beta1,6-N-ac
31 e identified as two uridylated amino sugars, UDP N-acetylglucosamine and UDP N-acetylgalactosamine.
32 hlights the residues important in binding of UDP-N-acetylglucosamine and 1-L-myo-inositol-1-phosphate
33 tivated as indicated by over 2-fold elevated UDP-N-acetylglucosamine and glycogen.
34 product state of the enzyme with enolpyruvyl-UDP-N-acetylglucosamine and inorganic phosphate trapped
35 e show that the N-acetylglucosamine donor is UDP-N-acetylglucosamine and that the N-acetylglucosamine
36 s, K(M), of the P. multocida HA synthase for UDP-N-acetylglucosamine and UDP-glucuronic acid were est
37 -3), all producing an identical polymer from UDP-N-acetylglucosamine and UDP-glucuronic acid.
38       We have characterized a transporter of UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine en
39 L2 in the apo-form and with donor substrates UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine.
40  transporter for UDP-glucose, UDP-galactose, UDP- N-acetylglucosamine, and UDP- N-acetylgalactosamine
41 aining cell wall precursors, UDP-Glucose and UDP-N-acetylglucosamine are efficiently used to initiate
42 hich use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates.
43 on of successive coupled enzyme assays using UDP-n-acetylglucosamine as the initial sugar substrate.
44 shown in digitonin-permeabilized cells, with UDP-N-acetylglucosamine as the substrate for nascent chi
45 tion mutant of the C03H5.2 protein transport UDP-N-acetylglucosamine at rates comparable with that of
46 each mutation using both the UDP-glucose and UDP-N-acetylglucosamine bound structures of the wild-typ
47 arbanion during the reduction of enolpyruvyl-UDP-N-acetylglucosamine catalyzed by the bacterial pepti
48        Glucosamine infusion increased muscle UDP-N-acetylglucosamine concentrations 3.9- and 4.3-fold
49  of enolpyruvate from phosphoenolpyruvate to UDP-N-acetylglucosamine, confirming they are both active
50 strate-free MurB and MurB complexed with the UDP-N-acetylglucosamine enolpyruvate (UNAGEP) substrate.
51 essential peptidoglycan biosynthetic enzyme, UDP-N-acetylglucosamine enolpyruvoyl transferase (MurA).
52 GlcNAc) and phosphoenolpyruvate catalyzed by UDP-N-acetylglucosamine enolpyruvoyl transferase.
53                                              UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) a
54          Gene sequences encoding the enzymes UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) f
55 s harbour two genes (murA and murZ) encoding UDP-N-acetylglucosamine enolpyruvyl transferase activity
56 chlamydial anomaly by characterizing MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase that cat
57 uncC (proton-translocating ATPase) and murA (UDP-N-acetylglucosamine enolpyruvyl transferase).
58                                        MurA (UDP-N-acetylglucosamine enolpyruvyl transferase, EC 2.5.
59                                        MurA (UDP-N-acetylglucosamine enolpyruvyl transferase, EC 2.5.
60 glucosamine, confirming they are both active UDP-N-acetylglucosamine enolpyruvyl transferases.
61 ne biosynthetic pathway (HBSP) that produces UDP-N-acetylglucosamine for O-linked N-acetylglucosamine
62  a pre-steady-state lag in the production of UDP-N-acetylglucosamine from acetyl-CoA, UTP, and glucos
63 was competent in catalyzing the formation of UDP-N-acetylglucosamine from UTP and N-acetylglucosamine
64 ied the pools of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, GDP-mannose, and GDP-fucose in
65 ence of NeuC showed similarities to those of UDP-N-acetylglucosamine (GlcNAc) 2-epimerases from both
66   A radioenzymatic synthesis of [32P]5-azido-UDP-N-acetylglucosamine has been accomplished using 5-az
67 daemia, which also increase tissue levels of UDP-N-acetylglucosamine in conscious rodents.
68 s specifically defective in the transport of UDP- N-acetylglucosamine into its Golgi apparatus.
69 ied S. aureus MGT catalyzed incorporation of UDP-N-acetylglucosamine into peptidoglycan, proving that
70 ich the activity of the uridine diphosphate (UDP)-N-acetylglucosamine:lysosomal enzyme N-acetylglucos
71  alpha- and beta-subunits of purified bovine UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosa
72            This modification is catalyzed by UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosa
73                    The kinetic properties of UDP-N-acetylglucosamine:lysosomal-enzyme N-acetylglucosa
74                                              UDP-N-acetylglucosamine:lysosomal-enzyme N-acetylglucosa
75 p in the synthesis of mannose 6-phosphate is UDP-N-acetylglucosamine:lysosomal-enzyme-N-acetylglucosm
76 md8Delta was reduced by deletion of the YEA4 UDP- N-acetylglucosamine or the HUT1 UDP-galactose trans
77 ring the reaction of free MurA and substrate UDP-N-acetylglucosamine or isomer UDP-N-acetylgalactosam
78 ationally predicted putative miR-185 targets UDP-N-acetylglucosamine-peptide N-acetylglucosaminyltran
79                   Two intracellular enzymes, UDP-N-acetylglucosamine-polypeptide beta-N-acetylglucosa
80 ion requires the presence of substrate UNAG (UDP-N-acetylglucosamine), proceeding with an inactivatio
81 n which the beta-phosphate of the substrate, UDP-N-acetylglucosamine, promotes the nucleophilic attac
82                                              UDP-N-acetylglucosamine pyrophosphorylase (UAP) is the f
83 ncluding Hill plots demonstrate clearly that UDP-N-acetylglucosamine pyrophosphorylase activity, puri
84                                              UDP-N-acetylglucosamine pyrophosphorylase immunoaffinity
85                     mmy codes for the single UDP-N-acetylglucosamine pyrophosphorylase in Drosophila,
86         Thus, the data support the idea that UDP-N-acetylglucosamine pyrophosphorylase is a major reg
87                                              UDP-N-acetylglucosamine pyrophosphorylase protein is pre
88 ylgalactosamine kinase, and Escherichia coli UDP-N-acetylglucosamine pyrophosphorylase, GlmU.
89 doglycan and that includes the UTP-requiring UDP-N-acetylglucosamine pyrophosphorylase.
90 A with the substrate analog, (E)-enolbutyryl-UDP-N-acetylglucosamine, showed a striking bias of the p
91 zes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to 1-L-myo-inositol-1-phosphate
92 e/N-acetylmannosamine kinase that transforms UDP-N-acetylglucosamine to N-acetylmannosamine (ManNAc)
93 is catalyzed by an unusual hetero-oligomeric UDP-N-acetylglucosamine transferase that in most eukaryo
94 erases I and II, and uridine 5'-diphosphate (UDP)-N-acetylglucosamine transporter.
95               SLC35A3 is considered the main UDP-N-acetylglucosamine transporter (NGT) in mammals.
96 UDP-galactose transporter (UGT; SLC35A2) and UDP-N-acetylglucosamine transporter (NGT; SLC35A3) form
97                                              UDP-N-acetylglucosamine (UDP-GlcNAc) acyltransferase (Lp
98                                              UDP-N-acetylglucosamine (UDP-GlcNAc) acyltransferase (Lp
99 At5g65000) as an ER-localized facilitator of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgal
100   Here we show that TpeL preferably utilizes UDP-N-acetylglucosamine (UDP-GlcNAc) as a sugar donor.
101 he hexosamine biosynthetic pathway, increase UDP-N-acetylglucosamine (UDP-GlcNAc) availability, and l
102 ge, and residues predicted to be involved in UDP-N-acetylglucosamine (UDP-GlcNAc) donor specificity.
103                         The sugar nucleotide UDP-N-acetylglucosamine (UDP-GlcNAc) is an essential met
104                          The HBP end product UDP-N-acetylglucosamine (UDP-GlcNAc) is used in enzymati
105 is in Gram-negative bacteria is catalyzed by UDP-N-acetylglucosamine (UDP-GlcNAc) O-acyltransferase,
106 r polysaccharide (CP5) is synthesized from a UDP-N-acetylglucosamine (UDP-GlcNAc) precursor that is e
107   Strikingly, addition of the HBP metabolite UDP-N-acetylglucosamine (UDP-GlcNAc) to CRPC-like cells
108 ses the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to serines and thre
109 etyl-glucosamine 6-dehydrogenase, converting UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetyl-glu
110 d is capable of catalyzing the conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetylgluc
111                       The specificity of the UDP-N-acetylglucosamine (UDP-GlcNAc) translocator for th
112 yzes this post-translational modification is UDP-N-acetylglucosamine (UDP-GlcNAc), a product of the h
113 -glucose (UDP-Glc), UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine (UDP-GlcNAc), and UDP-glucuronic
114 duct of the hexosamine biosynthetic pathway, UDP-N-acetylglucosamine (UDP-GlcNAc), result in rapid an
115 ecursors, UDP-glucuronic acid (UDP-GlcA) and UDP-N-acetylglucosamine (UDP-GlcNAc), were utilized to p
116              In complex with the cosubstrate UDP-N-acetylglucosamine (UDP-GlcNAc),O-linked-GlcNAc tra
117 olecules UDP-glucuronic acid (UDP-GlcUA) and UDP-N-acetylglucosamine (UDP-GlcNAc).
118                                   The enzyme UDP-N-acetylglucosamine (UDP-NAG) enolpyruvyltransferase
119 se UDP-glucuronic acid, and UGT3 enzymes use UDP-N-acetylglucosamine, UDP-glucose, and UDP-xylose to
120 d not transport CMP-sialic acid, GDP-fucose, UDP-N-acetylglucosamine, UDP-glucose, or GDP-mannose.
121 of MurA with respect to the first substrate, UDP-N-acetylglucosamine (UNAG), with a K(i) of 16 microM
122  higher than that of GFAT1, whereas K(i) for UDP-N-acetylglucosamine was approximately fivefold lower
123                                 [32P]5-Azido-UDP-N-acetylglucosamine was functionally characterized u
124 in the presence of the substrate enolpyruvyl-UDP-N-acetylglucosamine were solved and refined at 1.8 A
125 rconversion of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine while the bacterial enzyme canno

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top