コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 le for instantaneous reaction with substrate UDP-N-acetylglucosamine.
2 the biosynthesis of this sugar starting from UDP-N-acetylglucosamine.
3 se, as well as UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine.
4 interconverts UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine.
5 he release of the second product enolpyruvyl-UDP-N-acetylglucosamine.
6 of substrates: UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine.
7 aving endogenous transport activity for only UDP- N-acetylglucosamine.
8 RNA), lipoprotein YceK, toxin HicA, or MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase) suppr
9 Construction of a defined mutation in the UDP-N-acetylglucosamine-1-phosphate transferase gene, we
10 Construction of a defined mutation in the UDP-N-acetylglucosamine-1-phosphate transferase gene, we
11 se-1-phosphate uridylyltransferase (galU), a UDP-N-acetylglucosamine 2-epimerase (wecB) and a UDP-N-a
12 gC, are shown by complementation to encode a UDP-N-acetylglucosamine 2-epimerase and a UDP-N-acetylma
13 ingle protein with key enzymatic activities, UDP-N-acetylglucosamine 2-epimerase and N-acetylmannosam
14 imply that the neuC gene product encodes an UDP-N-acetylglucosamine 2-epimerase that generates ManNA
16 synthesis of sialic acid is the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine
17 n N-acetylmannosamine kinase (MNK) domain of UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine
18 have cloned and expressed the gene encoding UDP-N-acetylglucosamine 3-O-acyltransferase of C. tracho
20 ractions in the presence of 10 mM DTT, shows UDP-N-acetylglucosamine 6-dehydrogenase activity and is
21 n of glucosamine-1-P, UTP, and acetyl-CoA to UDP-N-acetylglucosamine, a fundamental precursor in bact
28 omplex of the acyltransferase protein, LpxA (UDP-N-acetylglucosamine acyltransferase), and acyl carri
29 lating the maturation of N-linked glycans is UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-a
31 e identified as two uridylated amino sugars, UDP N-acetylglucosamine and UDP N-acetylgalactosamine.
32 hlights the residues important in binding of UDP-N-acetylglucosamine and 1-L-myo-inositol-1-phosphate
34 product state of the enzyme with enolpyruvyl-UDP-N-acetylglucosamine and inorganic phosphate trapped
35 e show that the N-acetylglucosamine donor is UDP-N-acetylglucosamine and that the N-acetylglucosamine
36 s, K(M), of the P. multocida HA synthase for UDP-N-acetylglucosamine and UDP-glucuronic acid were est
39 L2 in the apo-form and with donor substrates UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine.
40 transporter for UDP-glucose, UDP-galactose, UDP- N-acetylglucosamine, and UDP- N-acetylgalactosamine
41 aining cell wall precursors, UDP-Glucose and UDP-N-acetylglucosamine are efficiently used to initiate
43 on of successive coupled enzyme assays using UDP-n-acetylglucosamine as the initial sugar substrate.
44 shown in digitonin-permeabilized cells, with UDP-N-acetylglucosamine as the substrate for nascent chi
45 tion mutant of the C03H5.2 protein transport UDP-N-acetylglucosamine at rates comparable with that of
46 each mutation using both the UDP-glucose and UDP-N-acetylglucosamine bound structures of the wild-typ
47 arbanion during the reduction of enolpyruvyl-UDP-N-acetylglucosamine catalyzed by the bacterial pepti
49 of enolpyruvate from phosphoenolpyruvate to UDP-N-acetylglucosamine, confirming they are both active
50 strate-free MurB and MurB complexed with the UDP-N-acetylglucosamine enolpyruvate (UNAGEP) substrate.
51 essential peptidoglycan biosynthetic enzyme, UDP-N-acetylglucosamine enolpyruvoyl transferase (MurA).
55 s harbour two genes (murA and murZ) encoding UDP-N-acetylglucosamine enolpyruvyl transferase activity
56 chlamydial anomaly by characterizing MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase that cat
61 ne biosynthetic pathway (HBSP) that produces UDP-N-acetylglucosamine for O-linked N-acetylglucosamine
62 a pre-steady-state lag in the production of UDP-N-acetylglucosamine from acetyl-CoA, UTP, and glucos
63 was competent in catalyzing the formation of UDP-N-acetylglucosamine from UTP and N-acetylglucosamine
64 ied the pools of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, GDP-mannose, and GDP-fucose in
65 ence of NeuC showed similarities to those of UDP-N-acetylglucosamine (GlcNAc) 2-epimerases from both
66 A radioenzymatic synthesis of [32P]5-azido-UDP-N-acetylglucosamine has been accomplished using 5-az
69 ied S. aureus MGT catalyzed incorporation of UDP-N-acetylglucosamine into peptidoglycan, proving that
70 ich the activity of the uridine diphosphate (UDP)-N-acetylglucosamine:lysosomal enzyme N-acetylglucos
71 alpha- and beta-subunits of purified bovine UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosa
75 p in the synthesis of mannose 6-phosphate is UDP-N-acetylglucosamine:lysosomal-enzyme-N-acetylglucosm
76 md8Delta was reduced by deletion of the YEA4 UDP- N-acetylglucosamine or the HUT1 UDP-galactose trans
77 ring the reaction of free MurA and substrate UDP-N-acetylglucosamine or isomer UDP-N-acetylgalactosam
78 ationally predicted putative miR-185 targets UDP-N-acetylglucosamine-peptide N-acetylglucosaminyltran
80 ion requires the presence of substrate UNAG (UDP-N-acetylglucosamine), proceeding with an inactivatio
81 n which the beta-phosphate of the substrate, UDP-N-acetylglucosamine, promotes the nucleophilic attac
83 ncluding Hill plots demonstrate clearly that UDP-N-acetylglucosamine pyrophosphorylase activity, puri
90 A with the substrate analog, (E)-enolbutyryl-UDP-N-acetylglucosamine, showed a striking bias of the p
91 zes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to 1-L-myo-inositol-1-phosphate
92 e/N-acetylmannosamine kinase that transforms UDP-N-acetylglucosamine to N-acetylmannosamine (ManNAc)
93 is catalyzed by an unusual hetero-oligomeric UDP-N-acetylglucosamine transferase that in most eukaryo
96 UDP-galactose transporter (UGT; SLC35A2) and UDP-N-acetylglucosamine transporter (NGT; SLC35A3) form
99 At5g65000) as an ER-localized facilitator of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgal
100 Here we show that TpeL preferably utilizes UDP-N-acetylglucosamine (UDP-GlcNAc) as a sugar donor.
101 he hexosamine biosynthetic pathway, increase UDP-N-acetylglucosamine (UDP-GlcNAc) availability, and l
102 ge, and residues predicted to be involved in UDP-N-acetylglucosamine (UDP-GlcNAc) donor specificity.
105 is in Gram-negative bacteria is catalyzed by UDP-N-acetylglucosamine (UDP-GlcNAc) O-acyltransferase,
106 r polysaccharide (CP5) is synthesized from a UDP-N-acetylglucosamine (UDP-GlcNAc) precursor that is e
107 Strikingly, addition of the HBP metabolite UDP-N-acetylglucosamine (UDP-GlcNAc) to CRPC-like cells
108 ses the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to serines and thre
109 etyl-glucosamine 6-dehydrogenase, converting UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetyl-glu
110 d is capable of catalyzing the conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetylgluc
112 yzes this post-translational modification is UDP-N-acetylglucosamine (UDP-GlcNAc), a product of the h
113 -glucose (UDP-Glc), UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine (UDP-GlcNAc), and UDP-glucuronic
114 duct of the hexosamine biosynthetic pathway, UDP-N-acetylglucosamine (UDP-GlcNAc), result in rapid an
115 ecursors, UDP-glucuronic acid (UDP-GlcA) and UDP-N-acetylglucosamine (UDP-GlcNAc), were utilized to p
119 se UDP-glucuronic acid, and UGT3 enzymes use UDP-N-acetylglucosamine, UDP-glucose, and UDP-xylose to
120 d not transport CMP-sialic acid, GDP-fucose, UDP-N-acetylglucosamine, UDP-glucose, or GDP-mannose.
121 of MurA with respect to the first substrate, UDP-N-acetylglucosamine (UNAG), with a K(i) of 16 microM
122 higher than that of GFAT1, whereas K(i) for UDP-N-acetylglucosamine was approximately fivefold lower
124 in the presence of the substrate enolpyruvyl-UDP-N-acetylglucosamine were solved and refined at 1.8 A
125 rconversion of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine while the bacterial enzyme canno
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。