戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 ocalized with P-selectin and was confined to Weibel-Palade bodies.
2  to the cytoplasmic tail to localize them in Weibel-Palade bodies.
3 rated vesicular storage of FVIII with vWf in Weibel-Palade bodies.
4 etylated LDL and the presence of cytoplasmic Weibel-Palade bodies.
5 iated with rod-shaped structures, typical of Weibel-Palade bodies.
6 yed impaired PDI secretion and exocytosis of Weibel-Palade bodies.
7                     Endothelial cells showed Weibel-Palade bodies.
8 ave structural similarities to intracellular Weibel-Palade bodies.
9 in protein on the cell surface as well as in Weibel-Palade bodies.
10 obilization of P-selectin from intracellular Weibel-Palade bodies.
11  stored as ultra-large (UL) VWF multimers in Weibel-Palade bodies.
12 pression was increased with the formation of Weibel-Palade bodies.
13 e (WT) mice indicated an elevated release of Weibel-Palade bodies.
14 red by MSU likely results from exocytosis of Weibel-Palade bodies.
15 have endothelial cells that are deficient in Weibel-Palade bodies.
16 s stored with von Willebrand factor (VWF) in Weibel-Palade bodies.
17  mediated in part by P-selectin contained in Weibel-Palade bodies.
18  in endothelial cells, where it is stored in Weibel-Palade bodies.
19 ce of NOS2 is correlated with the release of Weibel-Palade bodies.
20 by inhibiting the release of the contents of Weibel-Palade bodies.
21 s inflammatory mediators leads to release of Weibel--Palade bodies and therefore to exocytosis of bot
22 ce upon release from storage granules called Weibel-Palade bodies and is also transcriptionally upreg
23 ute inflammation by stimulating secretion of Weibel-Palade bodies and P-selectin-mediated leukocyte r
24 in costorage of FVIII and VWF in endothelial Weibel-Palade bodies and restores normal levels and acti
25  In contrast to multimeric VWF stored within Weibel-Palade bodies and secreted rapidly in response to
26                                              Weibel-Palade bodies and the von Willebrand factor antig
27 red tubules within storage organelles called Weibel-Palade bodies, and tubular packing is necessary f
28 ubunit, and are not preferentially stored in Weibel-Palade bodies as compared with the monomeric form
29 vWF behavior and suggested exocytosis of the Weibel-Palade body by the endothelium.
30  The results indicate that vWF released from Weibel-Palade bodies can dramatically increase the conce
31                                              Weibel-Palade bodies contain mediators that promote thro
32                                              Weibel-Palade bodies could not be identified in the cani
33 hat VWF multimerization is not necessary for Weibel-Palade body creation.
34  reductase inhibitors decrease exocytosis of Weibel-Palade bodies, endothelial cell granules whose co
35       We show that NO inhibits exocytosis of Weibel-Palade bodies, endothelial granules that mediate
36  next studied NO effects on ceramide-induced Weibel-Palade body exocytosis because NO can inhibit vas
37    Simvastatin decreased thrombin-stimulated Weibel-Palade body exocytosis by 89%.
38 o human aortic endothelial cells and assayed Weibel-Palade body exocytosis by measuring the concentra
39  CHGA led to the release of endothelin-1 and Weibel-Palade body exocytosis in cultured human umbilica
40 dings show that endogenous ceramide triggers Weibel-Palade body exocytosis, and that endogenous NO in
41 mmation and thrombosis in part by triggering Weibel-Palade body exocytosis.
42 , or tumor necrosis factor-alpha also induce Weibel-Palade body exocytosis.
43 sterone stimulates endothelial exocytosis of Weibel-Palade bodies, externalizing P-selectin and relea
44 von Willebrand disease, leads to a defect in Weibel--Palade body formation.
45                   We determined that loss of Weibel-Palade body formation is associated with markedly
46 w that P-selectin deficiency does not affect Weibel-Palade body formation or their release in respons
47 s to study intracellular VWF trafficking and Weibel-Palade body formation.
48          Activated endothelial cells release Weibel-Palade bodies, granules containing von Willebrand
49 were used to evaluate the role of VWF and/or Weibel-Palade bodies in Bordetella pertussis toxin-induc
50 the result of stimulated release of VWF from Weibel-Palade bodies in certain beds of endothelial cell
51 que opportunity to examine the biogenesis of Weibel-Palade bodies in endothelium from a canine model
52    P-selectin is constitutively expressed in Weibel-Palade bodies in the endothelium, which moved to
53 hagfish tissues demonstrated the presence of Weibel-Palade bodies in the endothelium.
54 osodium urate (MSU) results in exocytosis of Weibel-Palade bodies in vitro and in vivo, leading to th
55 um ionophore A23187, a known secretagogue of Weibel-Palade bodies, induced immediate platelet adhesio
56 e of NOS2 is correlated with the presence of Weibel-Palade bodies inside endothelial cells, whereas t
57  found that the typical rodlike shape of the Weibel--Palade body is missing in vWf -/- endothelial ce
58 strated that uric acid-induced exocytosis of Weibel-Palade bodies is mediated by TLR-4 and that uric
59  propeptide is required for the formation of Weibel-Palade bodies, it cannot independently induce the
60 ry, these results suggest that exocytosis of Weibel-Palade bodies links postischemic repair with infl
61   Angiopoietin 2 alone induced exocytosis of Weibel-Palade bodies, mobilized hematopoietic stem cells
62 ogether, these data indicate that VWF and/or Weibel-Palade bodies negatively regulate BBB permeabilit
63 aped organelles similar in appearance to the Weibel-Palade bodies of endothelial cells in which vWF i
64  ECE-1beta) in the perinuclear region and in Weibel-Palade bodies of the human umbilical vein endothe
65                               The release of Weibel-Palade bodies on infusion of activated platelets
66 ls, some ARHGAP18 puncta also colocalized to Weibel-Palade bodies on the microtubules.
67 ned within the ER, producing only few pseudo Weibel-Palade bodies over longer time periods compared w
68              They have been transfected into Weibel-Palade body-positive endothelial cells isolated f
69       Coexpression experiments show that the Weibel-Palade body proteins P-selectin and CD63, as well
70                                Prevention of Weibel-Palade body release might be a mechanism by which
71 VT likely through endothelial activation and Weibel-Palade body release, which is, at least in part,
72 actin cytoskeleton, cell-cell junctions, and Weibel-Palade body release.
73 ared to Prdx1(+/+) mice, indicating elevated Weibel-Palade body release.
74 S1P activates endothelial cell exocytosis of Weibel-Palade bodies, releasing vasoactive substances ca
75 EGF activates endothelial cell exocytosis of Weibel-Palade bodies, releasing vasoactive substances ca
76 d 48/80, an MC secretagogue, or histamine, a Weibel-Palade body secretagogue from MCs, potentiated DV
77 ADAMTS13 in preventing excessive spontaneous Weibel-Palade body secretion, and in the regulation of l
78 fusion machinery, inhibits the exocytosis of Weibel-Palade bodies, secretory granules containing a co
79 timulation with histamine, a secretagogue of Weibel-Palade bodies, slowed down leukocyte rolling in A
80 othelin (ET)-like immunoreactive staining in Weibel-Palade bodies, storage granules that are an integ
81  regulated VWF release from endothelial cell Weibel-Palade bodies, suggesting defective storage also
82        We demonstrate the reestablishment of Weibel-Palade bodies that recruit endogenous P-selectin
83 on, P-selectin is transiently mobilized from Weibel-Palade bodies to the surface of histamine-activat
84 ing vesicles in HUVECs are distinct from the Weibel-Palade bodies, which contain von Willebrand facto
85 Finally, heme promoted a rapid exocytosis of Weibel-Palade bodies, with membrane expression of P-sele
86                                              Weibel-Palade bodies within endothelial cells are secret
87                                              Weibel-Palade bodies (WPB) are secretory organelles of e
88 g-2 that is presynthesized and stored in the Weibel-Palade bodies (WPB) of endothelial cells upon bin
89             Activation induces the fusion of Weibel-Palade Bodies (WPB) with the plasma membrane, thu
90 lated secretory pathways, the latter two via Weibel-Palade bodies (WPB).
91                                              Weibel-Palade body (WPB) exocytosis underlies hormone-ev
92 on dependence and extent of histamine-evoked Weibel-Palade body (WPB) exocytosis were investigated wi
93                                          The Weibel-Palade body (WPB) is a well-described secretory g
94                    Endothelial exocytosis of Weibel-Palade body (WPB) is one of the first lines of de
95           Heme rapidly (5 minutes) mobilized Weibel-Palade body (WPB) P-selectin and VWF onto EC and
96 endothelial characteristics and responded to Weibel-Palade body (WPB) secretagogues except desmopress
97                           Serotonin releases Weibel-Palade bodies (WPBs) and we asked whether absence
98                                              Weibel-Palade bodies (WPBs) are specific cigar-shaped gr
99                                              Weibel-Palade bodies (WPBs) comprise an on-demand storag
100                            The exocytosis of Weibel-Palade bodies (WPBs) containing von Willebrand fa
101 roregion) following exocytosis of individual Weibel-Palade bodies (WPBs) from single human endothelia
102 ns of complement, on the release of vWF from Weibel-Palade bodies (WPBs) in human umbilical vein ECs
103                             The formation of Weibel-Palade bodies (WPBs) is also cargo driven, but th
104 (VWF) from intracellular organelles known as Weibel-Palade bodies (WPBs) is required for platelet adh
105       Indeed, although the storage of vWF in Weibel-Palade bodies (WPBs) of endothelial cells has bee
106 om platelets, it inhibits secretion from the Weibel-Palade bodies (WPBs) of endothelial cells.
107 ontain specialized storage organelles called Weibel-Palade bodies (WPBs) that release their content i
108  granules of vascular endothelial cells, the Weibel-Palade bodies (WPBs), and is released following s
109      At the acidic pH of the trans-Golgi and Weibel-Palade bodies (WPBs), but not at the alkaline pH
110                          VWF is stored in EC Weibel-Palade bodies (WPBs), but the intracellular locat
111 , a glycoprotein essential to haemostasis in Weibel-Palade bodies (WPBs), cigar-shaped secretory gran
112                                              Weibel-Palade bodies (WPBs), endothelial-specific secret
113 lized endothelial cell secretory organelles, Weibel-Palade bodies (WPBs), is thought to play an impor
114 of regulated secretory organelles, including Weibel-Palade bodies (WPBs), the tissue plasminogen acti
115 lease of endothelial storage organelles, the Weibel-Palade bodies (WPBs), whereas VWF is also a key d
116 ique rod-shaped secretory organelles, called Weibel-Palade bodies (WPBs), which contain the hemostati
117 s stored in unique secretory granules called Weibel-Palade bodies (WPBs).
118 is: fusion of individual secretory granules (Weibel-Palade bodies [WPBs]) and subsequent expulsion of

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top