戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 activator-like effector (TALE) proteins from Xanthomonas.
2 urkholderia, Pseudomonas, Saccharomyces, and Xanthomonas.
3 24), or strains of five different species of Xanthomonas.
4 active enzymes in Chlamydia, Rickettsia, and Xanthomonas.
5 dent for infection of both X. fastidiosa and Xanthomonas.
6 din is a pathogenicity factor synthesized by Xanthomonas albilineans in infections of sugar cane.
7 fecting production of the toxin albicidin in Xanthomonas albilineans, which causes leaf scald disease
8 enthamiana has been shown to be resistant to Xanthomonas and Pseudomonas due to an immune response tr
9  of Xcc as well as other non-xopX-expressing Xanthomonas and Pseudomonas strains.
10 the molecular basis for xylan degradation by Xanthomonas and suggest how these enzymes synergisticall
11 tility, perhaps conserved among Pseudomonas, Xanthomonas, and other organisms that encode two stator
12 ls suggest that phytopathogenic Pseudomonas, Xanthomonas, and Ralstonia spp. harbor large arsenals of
13           At least four different species of Xanthomonas are known to cause bacterial spot, and these
14 otide phosphodiesterase/pyrophosphatase from Xanthomonas axonopodis (NPP) is a structural and evoluti
15 e only found in the bacterial plant pathogen Xanthomonas axonopodis and the plant pathogenic fungi Co
16 cherichia coli alkaline phosphatase (AP) and Xanthomonas axonopodis nucleotide pyrophosphatase/phosph
17      Citrus bacterial canker (CBC) caused by Xanthomonas axonopodis pv. citri (Xac) was first documen
18                         The protein Clp from Xanthomonas axonopodis pv. citri regulates pathogenesis
19 cteria, including Pseudomonas aeruginosa and Xanthomonas axonopodis pv. citri.
20                                              Xanthomonas axonopodis pv. citrumelo is a citrus pathoge
21   Cassava bacterial blight (CBB), incited by Xanthomonas axonopodis pv. manihotis (Xam), is the most
22 rial blight, which is caused by the pathogen Xanthomonas axonopodis pv. manihotis (Xam).
23     We report the 4.94-Mb genome sequence of Xanthomonas axonopodis pv. punicae strain LMG 859, the c
24 ctor genes from the bacterial plant pathogen Xanthomonas axonopodis pv. vesicatoria (Xav) and examine
25 istance of pepper to incompatible strains of Xanthomonas axonopodis pv. vesicatoria or to X. campestr
26 transcription activator-like) effectors from Xanthomonas bacteria activate the cognate host genes, le
27 e effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants.
28 rs of plant pathogenic bacteria in the genus Xanthomonas bind host DNA and activate genes that contri
29 eins of the plant pathogenic bacterial genus Xanthomonas bind to and transcriptionally activate host
30  such as Rhizobium meliloti (succinoglycan), Xanthomonas campestris (xanthan gum), and Salmonella ent
31 , several crystal structures of AOTCase from Xanthomonas campestris (xc) have been determined.
32       A genetic screen in the plant pathogen Xanthomonas campestris (Xcc) identified that XC_0250, wh
33 AGS-K) while it destabilized the NAGS-K from Xanthomonas campestris (XcNAGS-K).
34 idensis (sIDO) indoleamine 2,3-dioxygenases, Xanthomonas campestris (XcTDO) tryptophan 2,3-dioxygenas
35 , Erwinia chrysanthemi and carotovora (out), Xanthomonas campestris (xps), Pseudomonas aeruginosa (xc
36                        We have identified in Xanthomonas campestris a novel N-acetylornithine transca
37              Recently, it was shown that the Xanthomonas campestris AvrBs2 protein can be delivered d
38    While phenotypes of a DeltarpfF strain in Xanthomonas campestris could be complemented by its own
39                                The OleA from Xanthomonas campestris has been crystallized and its str
40  of Erwinia amylovora, Pseudomonas spp., and Xanthomonas campestris has impeded the control of severa
41        Tryptophan 2,3-dioxygenase (TDO) from Xanthomonas campestris is a highly specific heme-contain
42                                The bacterium Xanthomonas campestris is an economically important path
43 lus subtilis OhrR) and 2-Cys (represented by Xanthomonas campestris OhrR).
44 , mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys(143)) enabled trapping
45  function of two B. subtilis homologs of the Xanthomonas campestris organic hydroperoxide resistance
46 tracellular enzymes and reduced virulence of Xanthomonas campestris pathovar campestris (Xcc).
47              XopN is a virulence factor from Xanthomonas campestris pathovar vesicatoria (Xcv) that i
48 onstrate that XopD, a type III effector from Xanthomonas campestris pathovar vesicatoria (Xcv), suppr
49 dependent hypersensitive response (HR) after Xanthomonas campestris pv campestris (Xcc) infection.
50                                              Xanthomonas campestris pv campestris (Xcc) is a plant pa
51 fense-eliciting activity of flagellins among Xanthomonas campestris pv campestris (Xcc) strains.
52 e adapted vascular phytopathogenic bacterium Xanthomonas campestris pv campestris (Xcc), the causal a
53 aliana accession Landsberg erecta (Ler) with Xanthomonas campestris pv campestris isolate 2D520 resul
54 om cold-treated, heat-treated, and pathogen (Xanthomonas campestris pv campestris)-infected plants, c
55  resistance gene are resistant to strains of Xanthomonas campestris pv vesicatoria (Xcv) expressing t
56 tion of tomato (Lycopersicon esculentum) and Xanthomonas campestris pv vesicatoria (Xcv), to examine
57 omato (Lycopersicon esculentum) and virulent Xanthomonas campestris pv vesicatoria (Xcv).
58 e 35S::Pto lines also were more resistant to Xanthomonas campestris pv vesicatoria and Cladosporium f
59 s of both genotypes with virulent bacterial (Xanthomonas campestris pv vesicatoria and Pseudomonas sy
60           AvrBsT is a type III effector from Xanthomonas campestris pv vesicatoria that is translocat
61 YopJ family effector from the plant pathogen Xanthomonas campestris pv vesicatoria, interacts with th
62 eviously identified 25.4-kbp pig region from Xanthomonas campestris pv. campestris (strain B-24).
63 p between the two signals in the Arabidopsis-Xanthomonas campestris pv. campestris (Xcc) compatible i
64 es and extracellular polysaccharide (EPS) in Xanthomonas campestris pv. campestris (Xcc) is regulated
65 ty acid signal DSF controls the virulence of Xanthomonas campestris pv. campestris (Xcc) to plants.
66                                           In Xanthomonas campestris pv. campestris (Xcc), the protein
67                                              Xanthomonas campestris pv. campestris can express AvrXa2
68 ) subgroup of the superfamily encoded by the Xanthomonas campestris pv. campestris str. ATCC 33913 ge
69                                              Xanthomonas campestris pv. campestris, the causal agent
70 resistance to the bacterial blight pathogen, Xanthomonas campestris pv. malvacearum (Xcm).
71                    Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. or
72                                   Strains of Xanthomonas campestris pv. vesicatoria (Xcv) carrying av
73 of the pepper Bs2 gene confers resistance to Xanthomonas campestris pv. vesicatoria (Xcv) pathogenic
74                       The bacterial pathogen Xanthomonas campestris pv. vesicatoria (Xcv) uses a type
75 with the disease-causing bacterial pathogen, Xanthomonas campestris pv. vesicatoria (Xcv).
76 igh titer inoculum of the non-host pathogen, Xanthomonas campestris pv. vesicatoria (Xcv).
77 he region was most similar to hrp genes from Xanthomonas campestris pv. vesicatoria and Ralstonia sol
78 ar characterization of the avrBs2 locus from Xanthomonas campestris pv. vesicatoria has revealed that
79 lene-insensitive tomato plants infected with Xanthomonas campestris pv. vesicatoria have greatly redu
80 esponse to virulent and avirulent strains of Xanthomonas campestris pv. vesicatoria in tomato (Lycope
81 , we show that infection of pepper plants by Xanthomonas campestris pv. vesicatoria strains expressin
82 ognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the
83 rulence gene of the bacterial plant pathogen Xanthomonas campestris pv. vesicatoria triggers disease
84                                              Xanthomonas campestris pv. vesicatoria, causal agent of
85 rotein D), a type III secreted effector from Xanthomonas campestris pv. vesicatoria, is a desumoylati
86 ity with a putative translocator, HrpF, from Xanthomonas campestris pv. vesicatoria.
87 shows homology to HrpF of the plant pathogen Xanthomonas campestris pv. vesicatoria.
88 uberculosis and AvrRxv of the plant pathogen Xanthomonas campestris pv. vesicatoria.
89 inerea and the biotrophic bacterial pathogen Xanthomonas campestris pv. vesicatoria.
90                             Previous work on Xanthomonas campestris showed that the RpfC/RpfG two-com
91 ve structural and biochemical studies of the Xanthomonas campestris TDO and a related protein SO4414
92                                          The Xanthomonas campestris transcription regulator OhrR cont
93                     In this study, OleA from Xanthomonas campestris was expressed in Escherichia coli
94 nomeric tetratricopeptide repeat domain from Xanthomonas campestris YbgF, which is also able to trime
95 acterial pathogens, Pseudomonas syringae and Xanthomonas campestris, and an oomycete, Peronospora par
96 to few pathovars of Pseudomonas syringae and Xanthomonas campestris, but also enhanced the growth of
97                                           In Xanthomonas campestris, the protein annotated as ornithi
98 enic bacteria, like Pseudomonas syringae and Xanthomonas campestris, use the type III secretion syste
99 -acetylglutamate synthase-kinase (NAGS-K) of Xanthomonas campestris, which is inhibited by arginine.
100    HfsA has sequence similarity to GumC from Xanthomonas campestris, which is involved in exopolysacc
101 cterium carotovorum, Ralstonia solanacearum, Xanthomonas campestris, Xanthomonas oryzae, and Xylella
102 resistance to a virulent bacterial pathogen, Xanthomonas campestris.
103 omonas syringae, Pseudomonas aeruginosa, and Xanthomonas campestris.
104 a, Ralstonia (Pseudomonas) solanacearum, and Xanthomonas campestris.
105  of Ralstonia (Pseudomonas) solanacearum and Xanthomonas campestris.
106 rotein shows significant homology to RpfF in Xanthomonas campestris.
107 ities to a superfamily phosphate diesterase [Xanthomonas citri nucleotide pyrophosphatase/phosphodies
108 ajor component of nonhost resistance against Xanthomonas citri subsp. citri (Xcc) and Pseudomonas syr
109 f Xcv shares 96% homology with the avrBs2 of Xanthomonas citri subsp. citri (Xcc), the causal agent o
110 al citrus canker disease, which is caused by Xanthomonas citri subsp. citri, is one of the most devas
111 cription activator-like (TAL) effectors from Xanthomonas citri subsp. malvacearum (Xcm) are essential
112                           Here, we show that Xanthomonas citri subspecies citri strain Xcc306, with t
113 nensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription activator-like effector
114  TAL effectors of the citrus canker pathogen Xanthomonas citri, known as PthAs, bind the carboxyl-ter
115 ein to study the direct translocation of the Xanthomonas effector protein, AvrBs2, into the plant hos
116     XopD, a type III secretion effector from Xanthomonas euvesicatoria (Xcv), the causal agent of bac
117 he gene was present in all of the strains of Xanthomonas examined.
118 esults indicate that CBC-inciting species of Xanthomonas exploit a single host disease susceptibility
119 tion activator-like (TAL) effector (TALE) in Xanthomonas gardneri that induces water-soaked disease l
120 ed de novo a functional analog of AvrHah1 of Xanthomonas gardneri.
121 e analysis and annotation of TALE genes from Xanthomonas genomes, and for grouping similar TALEs into
122 s and across a larger collection of complete Xanthomonas genomes.
123                                          The Xanthomonas genus includes Gram-negative plant-pathogeni
124 ene is highly conserved among members of the Xanthomonas genus, and the avrBs2 of Xcv shares 96% homo
125 e molecular basis of host specificity in the Xanthomonas genus, with a particular focus on the ecolog
126 wn to be type III secretion-dependent as the Xanthomonas hrp mutations, hrcV or hrpF, failed to produ
127                                              Xanthomonas is a large genus of bacteria that collective
128                        The xmnIRM genes from Xanthomonas manihotis 7AS1 have been cloned and expresse
129 lactosidases from humans and mice and with a Xanthomonas manihotis enzyme.
130                           The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzico
131            Previously, we showed that during Xanthomonas oryzae phage Xp10 infection, the phage prote
132 by the transcription regulator P7 encoded by Xanthomonas oryzae phage Xp10.
133 ruloyl esterase, acetylxylan esterase, and a Xanthomonas oryzae putative a-L: -arabinofuranosidase.
134 tibility to the rice pathogens M. oryzae and Xanthomonas oryzae pv oryzae (Xoo).
135               The avirulence gene avrXa10 of Xanthomonas oryzae pv oryzae directs the elicitation of
136     The rice Xa21 gene confers resistance to Xanthomonas oryzae pv oryzae in a race-specific manner.
137      Os-8N3 is a susceptibility (S) gene for Xanthomonas oryzae pv oryzae, the causal agent of bacter
138 he causal agent of bacterial blight disease, Xanthomonas oryzae pv oryzae.
139 (Oryza sativa) xylem and mesophyll pathogens Xanthomonas oryzae pv. oryzae (Xoo) and pv. oryzicola (X
140 rice genome where disease resistance loci to Xanthomonas oryzae pv. oryzae (Xoo) have been identified
141  the adaptation pathway of the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo) in a semi-isolated e
142                                              Xanthomonas oryzae pv. oryzae (Xoo) Philippine race 6 (P
143                      The biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo) produces a sulfated
144 21 confers resistance to a broad spectrum of Xanthomonas oryzae pv. oryzae (Xoo) races that cause bac
145  to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL
146 as expressed and delivered by the pathogenic Xanthomonas oryzae pv. oryzae (Xoo), in revealing the ne
147 ally related XA3 receptor confer immunity to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of
148 ce and challenged the transgenic plants with Xanthomonas oryzae pv. oryzae (Xoo), the rice bacterial
149 Adaptation of the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae (Xoo), to virulence in ric
150  The rice gene Xa21 conferring resistance to Xanthomonas oryzae pv. oryzae (Xoo), was isolated using
151 effects of infection by pathogenic bacterium Xanthomonas oryzae pv. oryzae (Xoo), which causes a vasc
152 nity (ETI) associated with pathogens such as Xanthomonas oryzae pv. oryzae (Xoo).
153 rs immunity to most strains of the bacterium Xanthomonas oryzae pv. oryzae (Xoo).
154 he rice gene Xa21 confers resistance against Xanthomonas oryzae pv. oryzae (Xoo).
155 hances resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo).
156 rs resistance against the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo).
157 astating bacterial blight diseases caused by Xanthomonas oryzae pv. oryzae (Xoo).
158  of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo).
159  of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo).
160 ght disease of rice (Oryza sativa) caused by Xanthomonas oryzae pv. oryzae (Xoo).
161                                              Xanthomonas oryzae pv. oryzae causes bacterial blight of
162 lp to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that h
163 s of xa5 in preventing disease by strains of Xanthomonas oryzae pv. oryzae is dependent on major tran
164 is the receptor for the sulfated form of the Xanthomonas oryzae pv. oryzae secreted protein Ax21.
165 s and animals, is elevated upon infection by Xanthomonas oryzae pv. oryzae strain PXO99(A) and depend
166                                              Xanthomonas oryzae pv. oryzae strain PXO99(A) induces th
167 nition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the AvrX
168 nition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the type
169 ity to the Gram-negative bacterial pathogen, Xanthomonas oryzae pv. oryzae upon recognition of a smal
170 t (Magnaporthe oryzae) and bacterial blight (Xanthomonas oryzae pv. oryzae).
171 ST protein from the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae, is a tyrosine sulfotransf
172  rice is caused by the gamma-proteobacterium Xanthomonas oryzae pv. oryzae, which utilizes a group of
173 genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae.
174 s also a virulence factor in strain PXO86 of Xanthomonas oryzae pv. oryzae.
175       We have cloned a hrp gene cluster from Xanthomonas oryzae pv. oryzae.
176 ithin four days after infection of bacterium Xanthomonas oryzae pv. oryzae.
177 s resistance to the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae; NH1, the rice ortholog of
178 gly, the rice bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc) contains a homolo
179                  The rice bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc) has been demonstr
180 BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc).
181                                              Xanthomonas oryzae pv. oryzicola causes bacterial leaf s
182 ore, we show that a native TAL effector from Xanthomonas oryzae pv. oryzicola drives expression of a
183 aize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial
184 agellins or derivative flg22(Xo) peptides of Xanthomonas oryzae pvs. oryzae (Xoo) and oryzicola (Xoc)
185  transcription factor p7 interacts with host Xanthomonas oryzae RNA polymerase beta' subunit and prev
186 port that some isolates of the rice pathogen Xanthomonas oryzae use truncated versions of TALEs (whic
187 e transcription antitermination mechanism of Xanthomonas oryzae virus Xp10 protein p7, which binds ho
188             Xp10 is a lytic bacteriophage of Xanthomonas oryzae, a Gram-negative bacterium that cause
189 rocessivity factor of RNAP of host bacterium Xanthomonas oryzae, a major rice pathogen.
190 stonia solanacearum, Xanthomonas campestris, Xanthomonas oryzae, and Xylella fastidiosa T2S also occu
191  plant pathogens Xanthomonas vesicatoria and Xanthomonas oryzae, capable of inhibiting disease sympto
192     Bacteriophage Xp10 infects rice pathogen Xanthomonas oryzae.
193 cteriophage of the phytopathogenic bacterium Xanthomonas oryzae.
194 major rice pathogens: Magnaporthe oryzae and Xanthomonas oryzae.
195 bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae.
196                                        XopD (Xanthomonas outer protein D), a type III secreted effect
197                                      The T3E Xanthomonas outer protein J (XopJ), a YopJ family effect
198  designated the identified TTSS effectors as Xanthomonas outer proteins (Xops).
199                                              Xanthomonas pathogens attack a variety of economically r
200                               Two classes of Xanthomonas pathogens evading Bs2 host resistance and di
201  lacks plasmids, in contrast to other citrus Xanthomonas pathogens.
202   The predicted AvrBs2 proteins from the two Xanthomonas pathovars were strongly conserved and had pr
203       Plant pathogenic bacteria of the genus Xanthomonas possess transcription activator-like effecto
204                               In Xylella and Xanthomonas, prophage activity is associated with genome
205 activator-like effector (TALE) proteins from Xanthomonas provides an alternative to ZFPs.
206 s PrrC is also toxic in yeast, Neisseria and Xanthomonas PrrCs are not.
207  mannitolilytica, Rhizobium radiobacter, and Xanthomonas sp.
208 binding proteins found in the plant pathogen Xanthomonas sp.
209 iption activator-like effectors (TALEs) from Xanthomonas sp. are site-specific DNA-binding proteins t
210 e present a structural analysis of RoxA from Xanthomonas sp. strain 35Y at a resolution of 1.8 A.
211 mall protein, Ax21, that is conserved in all Xanthomonas species and related genera.
212   TAL effectors delivered by phytopathogenic Xanthomonas species are DNA-sequence-specific transcript
213                      Several Pseudomonas and Xanthomonas species are plant pathogens that infect the
214 eted protein that is highly conserved in all Xanthomonas species as well as in Xylella fastidiosa and
215  the other two groups; it represents a third Xanthomonas species pathogenic on tomato and pepper.
216 cription activator-like (TAL) effectors from Xanthomonas species pathogens act as transcription facto
217  able to recognize XopQ alleles from various Xanthomonas species, as well as HopQ1 from Pseudomonas,
218   axY(S)22 is 100% conserved in all analyzed Xanthomonas species, confirming that Ax21 is a pathogen-
219             Xylella fastidiosa, like related Xanthomonas species, employs an Rpf cell-cell communicat
220  this pathogen shares many similarities with Xanthomonas species, such as its use of a small fatty ac
221 rains of X. oryzae pv. oryzae and some other Xanthomonas species.
222 monas, Erwinia, Klebsiella, Pseudomonas, and Xanthomonas spp.
223 ado and Paz, with a host range that includes Xanthomonas spp.
224 ry similar to T3SSs found in phytopathogenic Xanthomonas spp. and Ralstonia solanacearum.
225 e oligosaccharide identical to that of other Xanthomonas spp. and that the wxocB mutant lacks the O c
226                                              Xanthomonas spp. are phytopathogenic bacteria that can c
227 ost TALEs, and the overall TALE diversity in Xanthomonas spp. is not known.
228 tor-like (TAL) effectors of plant pathogenic Xanthomonas spp. to the FokI nuclease, TALENs bind and c
229  resistance to the bacterial spot pathogens (Xanthomonas spp.) occur in pepper and tomato.
230 l for the virulence of Pseudomonas syringae, Xanthomonas spp., Ralstonia solanacearum and Erwinia spe
231                          Three xop genes are Xanthomonas spp.-specific, whereas homologs for the rest
232 (-10) to 7 x 10(-10) ml cell(-1) min(-1) for Xanthomonas strain EC-12.
233                    Finally, we showed that a Xanthomonas strain lacking raxX is impaired in virulence
234 l death response also depends on whether the Xanthomonas strains contain an active TTSS.
235                          However, individual Xanthomonas strains usually cause disease on only a few
236 og of the cell wall-degrading enzyme LipA of Xanthomonas strains.
237  based on the modular DNA-binding domains of Xanthomonas TAL proteins, which enable DNA sequence-spec
238 from pepper that mediates recognition of the Xanthomonas TALE protein AvrBs4.
239 asses, we propose a unified nomenclature for Xanthomonas TALEs that reveals similarities pointing to
240 rs, produced by the bacterial plant-pathogen Xanthomonas, that function as gene activators inside pla
241                                              Xanthomonas transcription activator-like (TAL) effectors
242 udomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc).
243 ally important Gram-negative plant pathogens Xanthomonas vesicatoria and Xanthomonas oryzae, capable
244 ctive with a MIC value of 0.1 mug/ml against Xanthomonas vesicatoria, Pseudomonas corrugata and Pseud
245  the rigid SUMO specificity exhibited by the Xanthomonas virulence factor XopD.
246 lution) of the sHspA from the plant pathogen Xanthomonas (XaHspA).
247 as the unexpected deubiquitinase activity in Xanthomonas XopD, contributed by an unstructured ubiquit

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top