コーパス検索結果 (left1)
通し番号をクリックするとPubMedの該当ページを表示します
1 ZO-1 binds numerous transmembrane and cytoplasmic protei
2 ZO-1 depletion led to tight junction disruption, redistr
3 ZO-1 domains that mediate interactions with occludin and
4 ZO-1 is thus a central regulator of VE-cadherin-dependen
5 ZO-1 reactivity was patchy in Col12a1(-/-), Col14a1(-/-)
6 ZO-1 small interfering RNA and cDNA transfection experim
7 ZO-1 small interfering RNA and overexpression experiment
8 ZO-1 was required for junctional recruitment of JACOP, w
9 ZO-1-associated nucleic acid binding protein (ZONAB)/Dbp
10 ceptor (VDR), E-cadherin, zonula occluden 1 (ZO-1), occludin, claudin-2, tumor necrosis factor alpha
11 omponent of the occludin/zonula occludens 1 (ZO-1) adhesion complex at the BTB, structurally interact
12 barrier (BBB) occludin and zona occludens 1 (ZO-1) expression were significantly decreased; and micro
13 sly found that depleting zonula occludens 1 (ZO-1) family proteins in MDCK cells induces a highly org
15 with a scaffold protein, zonula occludens 1 (ZO-1), demonstrating that one claudin affects the abilit
16 unction-associated protein zona occludens 1 (ZO-1), translocation of ZO-1 to cell-cell borders, and t
18 the tight junction marker zona occludens-1 (ZO-1) and end-binding protein-1 (EB-1), which is specifi
20 transcripts, claudin-11, zonula-occludens-1 (ZO-1) and tricellulin in human SC endothelial monolayers
21 IL-1beta-induced loss of zonula occludens-1 (ZO-1) at the tight junctions and alterations in F-actin
25 (PSD-95)/Discs large (Dlg)/zona occludens-1 (ZO-1)] interactions with members of the PSD-95 family, a
27 ce (R(T)), dissociation of zona occludins 1 (ZO-1) from the tight junction complex, and bacterial tra
28 al barrier [anti-zonula occludens protein 1 (ZO-1) and anti-occludin], and hypoxia [anti-pimonidazole
32 l cells expressed the TJ proteins claudin-5, ZO-1, and ZO-2; HIV-1 decreased TJ proteins expression a
33 ype CMs, ephrin-B1 interacted with claudin-5/ZO-1 complex at the lateral membrane, whereas the comple
35 8, and 373 exhibited a significantly altered ZO-1 interaction profile, while mutants with S residues
36 tion via the H19-encoded miR-675 by altering ZO-1 and E-cadherin expression posttranscriptionally.
39 ke N-cadherin, desmoplakin, connexin-43, and ZO-1 was significantly perturbed upon pressure overload,
40 Cx43 (connexin 43), Cx45 (connexin 45), and ZO-1 (zonula occludens-1) were identified as novel mRNA
41 this issue, Choi et al. show that afadin and ZO-1 regulate tension and maintain zonula adherens archi
42 might be involved to suppress E-cadherin and ZO-1 expression and ectopic expression of a constitutive
43 ads to delayed recruitment of E-cadherin and ZO-1 to junctions, as well as a delay in tight junction
44 GB1 induced downregulation of E-cadherin and ZO-1, and upregulation of vimentin mRNA transcription an
45 redistribution of TJ proteins (e.g., CAR and ZO-1) from the cell-cell interface to cell cytosol cause
48 ein levels of JAM-A, occludin, cingulin, and ZO-1 several-fold in glomeruli and loosened their attach
49 wever, although binding between claudins and ZO-1/2/3 and between ZO-1/2/3 and numerous cytoskeletal
50 nteracting with F-actin, the Par complex and ZO-1, Alix ensures the formation and maintenance of the
54 analysis showed that ISD enhanced Neph1 and ZO-1 interaction under in vitro and in vivo conditions.
57 e expressing fluorescent-tagged occludin and ZO-1 fusion proteins to link occludin endocytosis to TNF
58 ith the tight junction proteins occludin and ZO-1 in a tyrosine phosphorylation-dependent manner.
60 in, and tight junction proteins occludin and ZO-1 was unchanged, the formation of these junctions aft
62 y a loss of association between occludin and ZO-1, likely the result of reduced occludin phosphorylat
63 d expression of the TJ proteins occludin and ZO-1, reduced cell proliferation, and increased sequestr
65 n assays, AT1002 decreased ZO-1-occludin and ZO-1-claudin 1 interactions coincident with PKCalpha-dep
68 audin-3, claudin-4, claudin-5, occludin, and ZO-1) and adherent junctional proteins (E-cadherin and b
69 udin-2, claudin-3, claudin-19, occludin, and ZO-1, but changes in the morphology of the junctions and
71 the expression of E-cadherin, vimentin, and ZO-1 (genes known to play a role in cellular proliferati
72 basal polarization (i.e., presence of apical ZO-1 and basolateral E-cadherin) and columnar shape.
73 tight and adherens junction proteins such as ZO-1, claudin, and JAM-A; however, exposure of SCs to in
74 Markers of apical-basal polarity, such as ZO-1, were mislocalized along the lateral and basal memb
75 data suggests that tight junction-associated ZO-1 exists in three pools, two of which exchange with c
76 and specific disruption of the TJ-associated ZO-1 and cytoskeletal-F-actin proteins, correlated with
77 loss of intercellular hepatic TJ-associated ZO-1 protein expression was evident with progressive cli
78 ng between claudins and ZO-1/2/3 and between ZO-1/2/3 and numerous cytoskeletal proteins has been dem
82 S365E, S368A, S368E, and S373A mutants bound ZO-1 throughout the GJ plaques, while the S373E mutant d
86 protein complexes (e.g., occludin-ZO-1, CAR-ZO-1, and N-cadherin-ss-catenin), through a down-regulat
88 lon-mediated MEK1-ERK1/2 activation, causing ZO-1 dissociation from occludin, disrupting endothelial
92 expression of the tight junction components ZO-1 and E-cadherin and the formation of ZO-1 containing
94 s of junctional proteins such as connexin43, ZO-1, occludin, and claudin11 were up-regulated in the a
97 y decreases in connexons, inhibition of Cx43/ZO-1 reduced the extent of perinexal interaction, increa
101 lung carcinoma that presented a cytonuclear ZO-1 pattern was significantly more angiogenic that that
105 immunoprecipitation assays, AT1002 decreased ZO-1-occludin and ZO-1-claudin 1 interactions coincident
106 igher intestinal permeability with decreased ZO-1 and occludin protein expression in the intestinal t
107 ier function and suggest that MLCK-dependent ZO-1 exchange is essential to this mechanism of barrier
108 f, FCIGRL, that increases PKCalpha-dependent ZO-1 and myosin 1C serine/threonine phosphorylation.
111 the wild-type protein but not of PSD95, Dlg, ZO-1 (PDZ), or leucine rich repeat domain mutants restor
112 the Cdc42/Rac interaction binding PSD-95/Dlg/ZO-1 (CRIB-PDZ) module that alters PDZ ligand binding.
113 se libraries we screened the nine PSD-95/Dlg/ZO-1 (PDZ) domains of human Densin-180, Erbin, Scribble,
115 ble counterparts, displays a PDZ (PSD-95/Dlg/ZO-1) domain located at its N terminus involved in subce
116 ole for the Cdh23 C-terminal PDZ (PSD-95/Dlg/ZO-1)-binding motif and observed that Cdh23 bound simila
117 rt that N-cadherin binds to PSD-95/SAP90/DLG/ZO-1 (PDZ) domain 2 of the glutamate receptor interactin
119 lass of ligand specificity in a PSD95, DLG1, ZO-1 (PDZ) domain preferentially occurs through class-br
124 helial cells and mouse tissues knock-out for ZO-1 do not show increased proliferation, as predicted b
126 gesting that the inability to disengage from ZO-1 prevented maturation of functional into nonfunction
127 es channel accrual, while disengagement from ZO-1 is critical for GJ channel closure and transitionin
128 , CK-19), and tight junction proteins (e.g., ZO-1), and impaired their migration/invasion capacity in
130 f TOCA-1 does not alter FRAP kinetics of GFP ZO-1 or occludin, but longer term (12 h) time-lapse micr
135 l membrane and fluid were initially found in ZO-1-positive vesicles, which were distinct from DFV, cl
136 both IkappaBalpha and p65 phosphorylation in ZO-1-overexpressing cells, and subsequent p65 silencing
137 show that an effector loop, the U6 region in ZO-1, forms a novel intramolecular interaction with the
140 of other tight junction proteins (including ZO-1) was not associated with alveolar fluid clearance o
141 of WT mice ex vivo, 15(S)-HETE also induced ZO-1 phosphorylation and endothelial TJ disruption in a
142 that the conserved PDZ (PSD95, Discs large, ZO-1) domain-containing protein PATJ (Pals1-associated t
143 embrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulat
144 binds to all three PDZ (PSD-95, Discs-large, ZO-1) domains of PSD-95, the principal PSD scaffold, and
145 etermined that the class I PSD-95/Disc Large/ZO-1 (PDZ)-binding domain of NleH was important for its
146 1) contains an N-terminal PSD-95/Discs large/ZO-1 (PDZ) domain and a central lipid-binding Bin/amphip
147 een one of its PSD-95/drosophila discs large/ZO-1 (PDZ) domains and the C-terminus of a subset of Fzd
148 nd postsynaptic density (PSD)-95/Discs Large/ZO-1 (PDZ) domains, which are present in many synaptic s
149 erminal ligand motifs for PSD-95/discs large/ZO-1 (PDZ) domains; via interaction with PDZ domain-cont
150 which are defined by the PSD-95/Discs large/ZO-1 (PDZ)-Src homology 3 (SH3)-guanylate kinase domain
153 a) binding domain and the PSD-95/Discs-large/ZO-1 (PDZ)-binding sequence of DAT, was made membrane-pe
155 proteins are a family of PSD-95/Discs-large/ZO-1 (PDZ)-scaffolding proteins, three of which (NHERFs
156 independent of the DHHC5 PSD-95/Discs-large/ZO-1 homology (PDZ) binding motif, but requires a approx
157 rating a postsynaptic density-95/disks-large/ZO-1 (PDZ)-binding domain, reduces Cx43/ZO-1 interaction
160 he claudin family; scaffolding proteins like ZO-1; and some cytoskeletal, signaling, and cell polarit
162 asured by altered localization of TJ markers ZO-1 and Occludin, decreased transepithelial electrical
164 higher intestinal expressions of Ki67, MUC2, ZO-1, IgA, mucin and lower barrier permeability than tho
166 Loss of JAM-A, Afadin, or PDZ-GEF2, but not ZO-1 or PDZ-GEF1, similarly decreased cellular levels of
169 ntermolecular interactions between occludin, ZO-1, and select claudins, and may have therapeutic pote
170 upting protein distribution (e.g., occludin, ZO-1) at the BTB, illustrating that rictor is a crucial
171 d adhesion protein complexes (e.g., occludin-ZO-1, CAR-ZO-1, and N-cadherin-ss-catenin), through a do
172 localized with F-actin, TJ proteins occludin/ZO-1 and basal ES (ectoplasmic specialization) proteins
176 is next showed the proangiogenic activity of ZO-1 in both ex vivo and in vivo angiogenesis assays.
177 role of CREB in Tat-mediated alterations of ZO-1 was confirmed in brain microvessels in mice with CR
178 calization at endothelial cell boundaries of ZO-1 and VE-Cadherin, two components of tight and adhere
179 alization and activity, whereas depletion of ZO-1 and ZO-2, which is associated with reduced ZO-3 exp
180 eins that are within molecular dimensions of ZO-1 by fusing biotin ligase to either its N or C termin
181 fications provoke selective disengagement of ZO-1 from its binding partners, occludin, claudin 1, and
184 ion integrity, promoting the displacement of ZO-1, and disorganization of cytoskeletal assembly.
185 -related phenotypes including: disruption of ZO-1-positive cell-cell junctions in tumour blood vessel
187 results show that double knockdown (dKD) of ZO-1/ZO-2 elevates the apical epithelial tension and eff
188 interactions between the first PDZ domain of ZO-1 (fused to eDHFR) and the C-terminal YV motif of cla
190 lar clutch model of adhesion, this effect of ZO-1 leads to a decrease in the density and intensity of
191 Darby canine kidney cells depleted either of ZO-1, or one of the related proteins ZO-2 and ZO-3 (ZO p
194 occludin exchange, but increases exchange of ZO-1, claudin-1, and claudin-2, thereby causing the mobi
196 n as well as decreased protein expression of ZO-1, whereas TNF-alpha and IL-8 mucosal transcript expr
199 present in leader positions at the front of ZO-1-rich invading cords of cells, where they extend vim
200 n experiments verified that loss and gain of ZO-1 function govern the transition of connexons into GJ
202 ticle examines the functional involvement of ZO-1 in CXCL8/IL-8 chemokine expression in lung and brea
203 thermore, small interfering RNA knockdown of ZO-1 completely inhibited the formation of gap junctions
204 at resulted in a decrease in total levels of ZO-1 but significantly upregulated ZO-1 protein expressi
205 REB in modulation of nuclear localization of ZO-1 and maintaining the integrity of endothelial monola
207 (CPEB1) mediates the apical localization of ZO-1 mRNA, which encodes a critical tight junction compo
212 also stimulates threonine phosphorylation of ZO-1 in the mediation of endothelial TJ disruption and i
214 ty is a key factor in NEC, Epo regulation of ZO-1 in the human fetal immature H4 intestinal epithelia
215 el of Neph1-CD, and the crystal structure of ZO-1-PDZ1 to construct a structural model of the Neph1-C
217 in zona occludens 1 (ZO-1), translocation of ZO-1 to cell-cell borders, and the formation of typical
219 association with actin is also dependent on ZO-1, but colocalization demonstrates intermittent rathe
222 ion of miR-675 processing from H19, promoted ZO-1 and E-cadherin expression, and restored the epithel
223 OCEL mutated within a recently proposed ZO-1-binding domain (K433) could not inhibit TNF effects
224 iption activity of the TJ-associated protein ZO-1-associated nucleic acid binding protein (ZONAB) wer
225 ncytokeratin, the junctional complex protein ZO-1, collagen type IV, as well as UB and collecting duc
226 on between Cx43 and the cytoskeletal protein ZO-1 is exclusively decreased at the late stage of PoH.
227 ion of mRNAs encoding tight junction protein ZO-1 and adherens junction E-cadherin, resulting in the
228 ogy and expression of tight junction protein ZO-1 and pump protein Na+/K+ ATPase alpha1 after culture
229 e localization of the tight junction protein ZO-1 consistent with a defect in the epithelial tight ju
230 but knockdown of the tight-junction protein ZO-1 enhanced permeability to oxalate and mannitol in pa
232 demonstrate that the tight junction protein ZO-1 regulates tension acting on VE-cadherin-based adher
236 ccludin to the structural organizing protein ZO-1 contributes to the regulation of barrier properties
238 cal association with the scaffolding protein ZO-1, but the significance of the interaction is unknown
239 ociated with stabilization of the TJ protein ZO-1 and mediated by the miR-155 target protein Rheb.
241 xpression of the tight junction (TJ) protein ZO-1, leading to a model whereby ZO-1 acts by sequesteri
242 he known role of zonula occludens-1 protein (ZO-1) in gap junction (GJ) function, we generated and an
243 edistribution of the tight junction proteins ZO-1 and occludin to lateral membranes of shedding cells
247 ssion of tight junction-associated proteins (ZO-1 and VE-cadherin) and PVM/M stabilizing neural cell
249 antibodies against tight junction proteins, ZO-1, and claudin-1 and by measuring apical-basolateral
252 on increased barrier function and stabilized ZO-1 at the tight junction but did not affect claudin-1,
253 was examined and demonstrated Epo-stimulated ZO-1 expression in a dose-dependent manner through the P
254 and other cytoskeletal proteins, suggesting ZO-1 and -2 might regulate cytoskeletal activity at cell
255 t intracameral injection of siRNAs targeting ZO-1 and tricellulin increased outflow facility signific
256 ion assays indicated that inhibition targets ZO-1 binding with Cx43 in GJs as well as connexons in an
260 Taken together, our results demonstrate that ZO-1 regulates CXCL8/IL-8 expression via the NF-kappaB s
261 1 showed junctional DbpA, demonstrating that ZO-1 is not required to sequester DbpA at junctions.
262 e studies are the first direct evidence that ZO-1 limits solute permeability in established tight jun
263 Collectively, our results indicate that ZO-1 binding regulates channel accrual, while disengagem
264 seen in the ZO-1 knockdown, suggesting that ZO-1 and -2 are not functionally redundant for these fun
266 ese data demonstrate a critical role for the ZO-1 ABR in barrier function and suggest that MLCK-depen
267 lity or morphological phenotypes seen in the ZO-1 knockdown, suggesting that ZO-1 and -2 are not func
269 in complex with the cytoplasmic tail of the ZO-1 PDZ3 ligand, junctional adhesion molecule A (JAM-A)
271 ed macrophages led to the degradation of the ZO-1 protein, which correlated with increased SCB permea
274 us, our results support the concept that the ZO-1 shuttle from the cell junction to the cytonuclear c
276 bit TNF effects, but OCEL mutated within the ZO-1 SH3-GuK-binding region (K485/K488) remained functio
278 experiments demonstrated loss of binding to ZO-1 when these residues were individually mutated to al
279 00 proteins tagged by biotin ligase fused to ZO-1, with both identical and distinct proteins near the
282 l-cell borders, and the formation of typical ZO-1 honeycomb patterns that are indicative of tight-jun
287 cologic MLCK inhibition also blocked in vivo ZO-1 exchange in wild-type, but not long MLCK(-/-), mice
290 s in the blood and tumor are associated with ZO-1 expression and metastatic progression in early-stag
292 nd integrin alpha5beta1 forms a complex with ZO-1 in cells at the edge of migrating monolayers, regul
293 The transport results were consistent with ZO-1 and VE-cadherin immunocytochemistry and expression
294 ng MI includes an interaction of p-cSrc with ZO-1 and subsequent loss of scaffolding of Cx43 leaving
295 mposed of Cx43 co-localized extensively with ZO-1 and actin fibers at cell peripheries and that ZO-1
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。