戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 nomycetemcomitans (previously Actinobacillus actinomycetemcomitans).
2  AZM or 16 mug/mL AMX (equipotent against A. actinomycetemcomitans).
3 and leukotoxin A (LtxA) from Aggregatibacter actinomycetemcomitans.
4 = 6 mm, BOP, and ABL, except Aggregatibacter actinomycetemcomitans.
5 and 41 participants who were negative for A. actinomycetemcomitans.
6 y those testing positive for Aggregatibacter actinomycetemcomitans.
7 tis and/or the individual colonization of A. actinomycetemcomitans.
8 both wild-type and morC mutant strains of A. actinomycetemcomitans.
9 d significant phagocytic activity against A. actinomycetemcomitans.
10 eased colonization risk with Aggregatibacter actinomycetemcomitans.
11 ted from the oral bacterium, Aggregatibacter actinomycetemcomitans.
12 equence of a serotype b non-JP2 strain of A. actinomycetemcomitans.
13 ve implants, per group, with Aggregatibacter actinomycetemcomitans.
14 may be capable of phosphorylating AI-2 in A. actinomycetemcomitans.
15 is required for optimal biofilm growth by A. actinomycetemcomitans.
16 Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans.
17 EmaA on the LPS biosynthetic machinery in A. actinomycetemcomitans.
18 Ns cope with an overwhelming infection by A. actinomycetemcomitans.
19 ved in biofilm formation and virulence of A. actinomycetemcomitans.
20 ycetemcomitans but not with S. oralis and A. actinomycetemcomitans.
21  of a trimeric autotransporter protein of A. actinomycetemcomitans.
22 re genes distinguished A. aphrophilus and A. actinomycetemcomitans.
23 ystem for AZM that may enhance killing of A. actinomycetemcomitans.
24 -producing organisms such as Aggregatibacter actinomycetemcomitans.
25 P for detection frequency of key pathogen A. actinomycetemcomitans.
26 ation between smoking and the presence of A. actinomycetemcomitans.
27 ormation, and periodontitis severity than A. actinomycetemcomitans.
28 is required for optimal biofilm growth by A. actinomycetemcomitans.
29 i, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans.
30 l levels and prediabetes were as follows: A. actinomycetemcomitans, 2.48 (1.34, 4.58), P = 0.004; P.
31  The majority of the individuals carrying A. actinomycetemcomitans (80.1%) (P <0.001) and of the peri
32 th altered outer membrane morphology make A. actinomycetemcomitans a model organism for examining mem
33 leatum (a middle colonizer), Aggregatibacter actinomycetemcomitans (a late colonizer), and P. gingiva
34 nomycetemcomitans (previously Actinobacillus actinomycetemcomitans), a capnophilic facultative anaero
35                              Aggregatibacter actinomycetemcomitans, a periodontal pathogen, synthesiz
36 tx is a marker for presence of leukotoxic A. actinomycetemcomitans, a presence that may modify the di
37 terial complexes, and "high" Aggregatibacter actinomycetemcomitans (Aa) colonization.
38 ammatory response induced by Aggregatibacter actinomycetemcomitans (Aa) in human coronary artery endo
39  bacterial biofilm of Sg and Aggregatibacter actinomycetemcomitans (Aa) in terms of hydrogen peroxide
40 disease (PD) associated with Aggregatibacter actinomycetemcomitans (Aa) infection.
41            The oral pathogen Aggregatibacter actinomycetemcomitans (Aa) resides in infection sites wi
42                              Aggregatibacter actinomycetemcomitans (Aa) was the only species found to
43 usobacterium nucleatum (Fn), Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg
44 rphyromonas gingivalis (Pg), Aggregatibacter actinomycetemcomitans (Aa), Tannerella forsythia (Tf), a
45 e, and alveolar bone loss in Aggregatibacter actinomycetemcomitans (Aa)-inoculated Fawn Hooded Hypert
46 nomycetemcomitans (previously Actinobacillus actinomycetemcomitans [Aa]), and divided into a cohort o
47 D superfamily of genes and that TadZ from A. actinomycetemcomitans (AaTadZ) forms a polar focus in th
48                                           A. actinomycetemcomitans activates the p38 mitogen-activate
49 ere the three-organism consortium (versus A. actinomycetemcomitans alone) was detected, the specifici
50 ences in serum IgG levels to Aggregatibacter actinomycetemcomitans among the four diagnostic categori
51                              Aggregatibacter actinomycetemcomitans, an oral pathogen representative o
52 and in vitro colonization by Aggregatibacter actinomycetemcomitans, an organism highly associated wit
53  as a direct transcriptional activator in A. actinomycetemcomitans; an mlc deletion mutant reduces le
54 umina MiSeq platform was performed for 31 A. actinomycetemcomitans and 2 A. aphrophilus strains.
55 ing 41 participants who were positive for A. actinomycetemcomitans and 41 participants who were negat
56 cin-loaded PMNs killed significantly more A. actinomycetemcomitans and achieved shorter half-times fo
57                                           A. actinomycetemcomitans and AL were frequently found in Gh
58 e strongest predictor of both presence of A. actinomycetemcomitans and AL.
59  wild-type mice were orally infected with A. actinomycetemcomitans and analyzed for bacterial coloniz
60 a are reported concerning the presence of A. actinomycetemcomitans and attachment loss (AL) in sub-Sa
61  several bacteria, including Aggregatibacter actinomycetemcomitans and Caulobacter crescentus.
62 lacZ transcriptional fusions in wild-type A. actinomycetemcomitans and DeltaihfA and DeltaihfB mutant
63 ted on days 0, 2, and 4 with Aggregatibacter actinomycetemcomitans and divided into groups (n = 5) th
64 ssion models, subgingival colonization of A. actinomycetemcomitans and F. nucleatum/periodonticum was
65  chain reaction, and culture detection of A. actinomycetemcomitans and microcomputed tomography quant
66 omitans in BL and (ii) the association of A. actinomycetemcomitans and other microbes in their relati
67 gival plaque samples for the detection of A. actinomycetemcomitans and P. gingivalis in each of the 1
68                                           A. actinomycetemcomitans and P. gingivalis quantities in sa
69                             The counts of A. actinomycetemcomitans and P. gingivalis were significant
70 n the groups were seen after 3 months for A. actinomycetemcomitans and P. gingivalis, and after 12 mo
71 respectively, developed multiple CFUs for A. actinomycetemcomitans and P. gingivalis.
72                              Aggregatibacter actinomycetemcomitans and Parvimonas micra (Pm) showed a
73 study, the aim is to measure Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis amoun
74       Different serotypes of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis have
75 tion in periodontopathogenic Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis viabi
76 inst the periodontopathogens Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis with
77 3 and PCT5 were dominated by Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis, resp
78                                           A. actinomycetemcomitans and Staphylococcus species do not
79            The prevalence of Aggregatibacter actinomycetemcomitans and Staphylococcus species was ver
80 full activity and modification of LtxA in A. actinomycetemcomitans and that modification is important
81 vides a comprehensive genomic analysis of A. actinomycetemcomitans and the closely related nonpathoge
82 frequency of JP2 and non-JP2 genotypes of A. actinomycetemcomitans and the presence of AL in Ghanaian
83 thensis, Treponema denticola, Actinobacillus actinomycetemcomitans) and dental caries (Streptococcus
84 nomycetemcomitans (previously Actinobacillus actinomycetemcomitans) and Porphyromonas gingivalis in p
85 nomycetemcomitans (previously Actinobacillus actinomycetemcomitans) and Porphyromonas gingivalis.
86 nomycetemcomitans (previously Actinobacillus actinomycetemcomitans), and Porphyromonas gingivalis.
87  of the periodontal pathogen Aggregatibacter actinomycetemcomitans, and a commensal Streptococcus par
88 trains antagonistic toward P. gingivalis, A. actinomycetemcomitans, and F. nucleatum was found to be
89 of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum were
90 a: Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum.
91 , GI, total bacterial load, T. forsythia, A. actinomycetemcomitans, and GCF volume.
92 idence of the association of Aggregatibacter actinomycetemcomitans, and its highly leukotoxic JP2 gen
93    The PCR-positive triad, P. gingivalis, A. actinomycetemcomitans, and P. intermedia, was associated
94 s of Parvimonas micra, Filifactor alocis, A. actinomycetemcomitans, and Peptostreptococcus sp. human
95 icantly greater amounts of P. gingivalis, A. actinomycetemcomitans, and T. forsythia than never-smoke
96               Streptococcus, Actinomyces, A. actinomycetemcomitans, and total anaerobic counts were e
97 valis, Tannerella forsythia, Aggregatibacter actinomycetemcomitans, and total bacterial load were det
98 rulence of the oral pathogen Aggregatibacter actinomycetemcomitans, and we previously showed that lsr
99 of S. gordonii with P. gingivalis or with A. actinomycetemcomitans are more pathogenic in animal mode
100     Eighty participants with Aggregatibacter actinomycetemcomitans-associated moderate to advanced pe
101                     The carrier status of A. actinomycetemcomitans at the individual level was determ
102     PRP interfered with P. gingivalis and A. actinomycetemcomitans attachment and enhanced exfoliatio
103  and Mk2(-/-) mice were treated with live A. actinomycetemcomitans bacteria at the midsagittal suture
104                                           A. actinomycetemcomitans binding to SHA was irreversible an
105              The trimeric adhesin EmaA of A. actinomycetemcomitans binds to collagen and is modified
106 sults describe a novel animal model where A. actinomycetemcomitans biofilm was established in vitro o
107                                    Viable A. actinomycetemcomitans biofilm was successfully establish
108 nomycetemcomitans (previously Actinobacillus actinomycetemcomitans)-biofilm colonizing titanium impla
109  gingivalis grew with Veillonella sp. and A. actinomycetemcomitans but not with S. oralis and A. acti
110 s aureus, S. epidermidis and Aggregatibacter actinomycetemcomitans, but not by A. pleuropneumoniae se
111 an AMX at enhancing phagocytic killing of A. actinomycetemcomitans by neutrophils.
112 nomycetemcomitans (previously Actinobacillus actinomycetemcomitans), Campylobacter rectus, Fusobacter
113 clustered into eight groups: Aggregatibacter actinomycetemcomitans, Campylobacter spp., Capnocytophag
114                Gram-negative Aggregatibacter actinomycetemcomitans can be distinguished (based on the
115 Aggregatibacter aphrophilus, Aggregatibacter actinomycetemcomitans, Cardiobacterium hominis, Eikenell
116 rom the periodontal pathogen Aggregatibacter actinomycetemcomitans causes extensive damage to gingiva
117     Our previous studies with Actinobacillus actinomycetemcomitans Cdt demonstrate not only that the
118                 Here, we demonstrate that A. actinomycetemcomitans Cdt kills proliferating and nonpro
119                                           A. actinomycetemcomitans cells rapidly lost viability at ev
120                                           A. actinomycetemcomitans cells were highly sensitive to eve
121 th differing constellations of genes, the A. actinomycetemcomitans clades may have evolved distinct a
122                                  In vivo, A. actinomycetemcomitans colonized HA within 6 h and thus c
123 bility of mast cells against Aggregatibacter actinomycetemcomitans compared with macrophages is evalu
124 (Rv) and isogenic smooth (Sv) variants of A. actinomycetemcomitans cultured in half-strength and full
125 ocytes after exposure to the Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt)
126 es following exposure to the Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt)
127                                 In vitro, A. actinomycetemcomitans desorbed from BECs and transferred
128               Sixteen of 63 subjects with A. actinomycetemcomitans developed BL (the other 47 subject
129 pport, and pathogens such as Aggregatibacter actinomycetemcomitans display resource partitioning to f
130 eptococci, the oral pathogen Aggregatibacter actinomycetemcomitans displays enhanced resistance to ki
131     The periodontal pathogen Aggregatibacter actinomycetemcomitans displays on the bacterial surface
132 and nine small regulatory RNAs (sRNAs) in A. actinomycetemcomitans during planktonic and biofilm grow
133     Prevalence and levels of Aggregatibacter actinomycetemcomitans, Eikenella corrodens, and Fusobact
134 ast cells and macrophages, incubated with A. actinomycetemcomitans, either opsonized or not, with dif
135 at a low concentration range regulated by A. actinomycetemcomitans enhanced the biofilm formation.
136 Ts from Haemophilus ducreyi, Aggregatibacter actinomycetemcomitans, Escherichia coli, and Campylobact
137                              Aggregatibacter actinomycetemcomitans establishes a tenacious biofilm th
138 um implants were inoculated in vitro with A. actinomycetemcomitans, establishing a biofilm for 1 to 3
139                      In this environment, A. actinomycetemcomitans faces numerous host- and microbe-d
140 se H and fumarate reductase are important A. actinomycetemcomitans fitness determinants in vivo.
141 points over 7 h to assess the transfer of A. actinomycetemcomitans from teeth or BECs to HA.
142  defined medium, approximately 14% of the A. actinomycetemcomitans genes were differentially regulate
143 genes accounted for 14.1% to 23.2% of the A. actinomycetemcomitans genomes, with a majority belonging
144                                      Only A. actinomycetemcomitans grew after 36 h when peg biofilms
145  developed BL (the other 47 subjects with A. actinomycetemcomitans had no BL).
146            Patients who were positive for A. actinomycetemcomitans had no specific benefit from amoxi
147                                           A. actinomycetemcomitans IHFalpha and IHFbeta were expresse
148 trongest association with the presence of A. actinomycetemcomitans in all subjects and in the subgrou
149  every 6 months to assess (i) the role of A. actinomycetemcomitans in BL and (ii) the association of
150 ient mutant KDP128, and live Aggregatibacter actinomycetemcomitans In contrast, infection of miR-155
151 JP2 and non-JP2 genotypes of Aggregatibacter actinomycetemcomitans in the Ghanaian adolescent populat
152              One patient was positive for A. actinomycetemcomitans in the three types of samples.
153 ir periodontal status and the presence of A. actinomycetemcomitans in their oral cavity.
154 ight into metabolic pathways required for A. actinomycetemcomitans in vivo fitness.
155 tially regulated in vivo, suggesting that A. actinomycetemcomitans in vivo metabolism is distinct fro
156 f the opportunistic pathogen Aggregatibacter actinomycetemcomitans in vivo.
157 ipopolysaccharide (LPS) from Aggregatibacter actinomycetemcomitans in wild-type (WT) and SP/ON-null C
158 , T. denticola, and T. forsythia, but not A. actinomycetemcomitans, in subgingival plaque.
159 e antibodies induced by P. gingivalis and A. actinomycetemcomitans include anti-phosphorylcholine (al
160 egative periodontal pathogen Aggregatibacter actinomycetemcomitans include serotype a, b, and c strai
161                       Oral infection with A. actinomycetemcomitans increased LF levels in periodontal
162  Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans, increased GCF-IL-1beta levels, an
163 Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans induce remarkable IgG responses th
164 d LFKO(-/-) mice were more susceptible to A. actinomycetemcomitans-induced alveolar bone loss, with d
165  regulation of chemokine signaling during A. actinomycetemcomitans-induced inflammation and bone loss
166                              Aggregatibacter actinomycetemcomitans-induced localized aggressive perio
167 tudy is to evaluate the role of LF during A. actinomycetemcomitans-induced periodontitis.
168 xide synthase (iNOS) in a murine model of A. actinomycetemcomitans-induced periodontitis.
169 and nitrogen intermediates in periodontal A. actinomycetemcomitans infection and progression to perio
170 hat NADPH oxidase is important to control A. actinomycetemcomitans infection in the murine oral cavit
171  by the periodontal pathogen Aggregatibacter actinomycetemcomitans, inhibits the proliferation of cul
172  the Gram-negative bacterium Aggregatibacter actinomycetemcomitans is a fibrillar collagen adhesin be
173                              Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium that
174                              Aggregatibacter actinomycetemcomitans is a Gram-negative commensal bacte
175                              Aggregatibacter actinomycetemcomitans is a human pathogen that produces
176 eukotoxin (Ltx) expressed by Aggregatibacter actinomycetemcomitans is a powerful exotoxin, which can
177                              Aggregatibacter actinomycetemcomitans is an opportunistic pathogen that
178    Gram-negative facultative Aggregatibacter actinomycetemcomitans is an oral pathogen associated wit
179                              Aggregatibacter actinomycetemcomitans is associated with aggressive peri
180 nfirmatory evidence that the detection of A. actinomycetemcomitans is associated with IL-6 genetic fa
181  by the periodontal pathogen Aggregatibacter actinomycetemcomitans is dependent upon autoinducer-2 (A
182                              Aggregatibacter actinomycetemcomitans is hypothesized to colonize throug
183                              Aggregatibacter actinomycetemcomitans is implicated in localized aggress
184 e we show that the expression of QseBC in A. actinomycetemcomitans is induced by AI-2 and that induct
185                              Aggregatibacter actinomycetemcomitans is the main periodontopathogen of
186 illonella sp. strain PK1910, Aggregatibacter actinomycetemcomitans JP2, and Fusobacterium nucleatum A
187 inhibit biofilm formation by Aggregatibacter actinomycetemcomitans, Klebsiella pneumoniae, Staphyloco
188 atum (middle colonizer), and Aggregatibacter actinomycetemcomitans (late colonizer).
189                              Aggregatibacter actinomycetemcomitans leukotoxin (LtxA) is a major virul
190 a, Tannerella forsythia, and Aggregatibacter actinomycetemcomitans levels in subgingival plaque were
191 ans outer membrane protein 29 (Omp29) and A. actinomycetemcomitans lipopolysaccharide (LPS) were inje
192  by periodontal injection of Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS), while si
193  by periodontal injection of Aggregatibacter actinomycetemcomitans LPS.
194  or alternatively that the start codon of A. actinomycetemcomitans lsrA has been incorrectly annotate
195 e previously showed that the Aggregatibacter actinomycetemcomitans lsrACDBFG and lsrRK operons are re
196 vels of systemic immunoreactivity against A. actinomycetemcomitans Ltx are associated with decreased
197 f murine mast cells as phagocytes against A. actinomycetemcomitans, mainly in the absence of opsoniza
198                                           A. actinomycetemcomitans migrated from BECs to HA in vivo a
199  HA in vivo and to SHA in vitro; however, A. actinomycetemcomitans movement from teeth and SHA to BEC
200       Detection frequency of Aggregatibacter actinomycetemcomitans (MT4/MSP: 42%/36%), Porphyromonas
201                               Seventy-one A. actinomycetemcomitans-negative and 63 A. actinomycetemco
202 itans positive for teeth only, and 3 were A. actinomycetemcomitans-negative controls) had two mandibu
203                                        No A. actinomycetemcomitans-negative subjects developed BL.
204                       All 5 subjects with A. actinomycetemcomitans on BECs showed transfer of A. acti
205 itans to HA was not seen in subjects with A. actinomycetemcomitans on teeth only.
206 Cs stimulated with different serotypes of A. actinomycetemcomitans or P. gingivalis is TLR2 or TLR4 d
207 Cs stimulated with different serotypes of A. actinomycetemcomitans or P. gingivalis is Toll-like rece
208 f infection (MOI) of 10(2) with different A. actinomycetemcomitans or P. gingivalis serotypes in the
209 en DCs were stimulated with serotype b of A. actinomycetemcomitans or serotype K1 of P. gingivalis, h
210 in relation to increasing colonization of A. actinomycetemcomitans (OR = 1.36 for one standard deviat
211                              Aggregatibacter actinomycetemcomitans outer membrane protein 29 (Omp29)
212                             The counts of A. actinomycetemcomitans (P <0.001), P. gingivalis (P = 0.0
213 etween smoking status and the presence of A. actinomycetemcomitans (P <0.001).
214 sponse to the challenge by two strains of A. actinomycetemcomitans (P = 0.018 and P = 0.046).
215 ctively 60%, 62%, and 40% of subjects had A. actinomycetemcomitans, P. gingivalis, and both bacteria
216       All targeted periodontal pathogens (A. actinomycetemcomitans, P. gingivalis, T. forsythia, or C
217                                           A. actinomycetemcomitans, P. gingivalis, T. forsythia, P. i
218  signaling in chemokine regulation during A. actinomycetemcomitans pathogenesis.
219               At 5 weeks after infection, A. actinomycetemcomitans persisted at significantly higher
220 nomycetemcomitans (previously Actinobacillus actinomycetemcomitans), Porphyromonas gingivalis, and Pr
221 esence and quantification of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis (Pg), Ta
222 ntify periodontal pathogens (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Campylo
223 nce of Campylobacter rectus, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannere
224 olymerase chain reaction for Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannere
225 ue samples were analyzed for Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannere
226  determined total bacterial, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannere
227 titative bacterial counts of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannere
228 esence and quantification of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannere
229 essed at baseline, including Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Trepone
230                          For Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Trepone
231               Thirteen volunteers (5 were A. actinomycetemcomitans positive for buccal epithelial cel
232 epithelial cells [BECs] and teeth, 5 were A. actinomycetemcomitans positive for teeth only, and 3 wer
233 e following factors (interaction effect): A. actinomycetemcomitans-positive or -negative at baseline,
234                                     Being A. actinomycetemcomitans-positive or -negative did not chan
235  A. actinomycetemcomitans-negative and 63 A. actinomycetemcomitans-positive periodontally healthy sub
236      On a subject level, pooled data from A. actinomycetemcomitans-positive subjects who remained hea
237 eptococcus and Actinomyces species, while A. actinomycetemcomitans-positive subjects with BL had high
238 o study the host response to Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinom
239 inhibitory concentration for Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinom
240 nhance their ability to kill Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinom
241                              Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinom
242 esponse to Escherichia coli, Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinom
243  factors on the detection of Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinom
244 e in a bacterial solution of Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinom
245 s were screened, sampled for Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinom
246 globulin G (IgG) antibody to Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinom
247 s (Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans [previously Actinobacillus actinom
248 of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Prevotella intermedia, Eikenella
249 nomycetemcomitans [previously Actinobacillus actinomycetemcomitans], Prevotella intermedia, Tannerell
250                              Aggregatibacter actinomycetemcomitans produces a repeats-in-toxin (RTX)
251                            We report that A. actinomycetemcomitans promoted biofilm formation of S. p
252            These results demonstrate that A. actinomycetemcomitans promotes the S. parasanguinis biof
253 he Escherichia coli LsrB and Aggregatibacter actinomycetemcomitans RbsB proteins that bind AI-2.
254                              Aggregatibacter actinomycetemcomitans resists killing by neutrophils and
255                    While it is clear that A. actinomycetemcomitans responds to precise cues that allo
256 ling of S. parasanguinis co-cultured with A. actinomycetemcomitans revealed a significant decrease in
257 e conclude that detecting the presence of A. actinomycetemcomitans, S. parasanguinis, and F. alocis t
258                                           A. actinomycetemcomitans secretes a protein toxin, leukotox
259 ociated with increased systemic levels of A. actinomycetemcomitans-specific immunoglobulins and incre
260 uggest that antibody to RANKL can inhibit A. actinomycetemcomitans-specific T cell-induced periodonta
261  constructed a hyper-leukotoxin producing A. actinomycetemcomitans strain and identified a terminator
262 We report the first genome sequence of an A. actinomycetemcomitans strain isolated from an Old World
263                                 Opsonized A. actinomycetemcomitans strain Y4 was incubated with the i
264                                           A. actinomycetemcomitans strains can produce high or low le
265                                           A. actinomycetemcomitans strains expressing EmaA with the i
266           The genetic heterogeneity among A. actinomycetemcomitans strains has been long recognized.
267                              Aggregatibacter actinomycetemcomitans strains that express cytolethal di
268                      At vulnerable sites, A. actinomycetemcomitans, Streptococcus parasanguinis, and
269 human oropharyngeal pathogen Aggregatibacter actinomycetemcomitans synthesizes multiple adhesins, inc
270 s (Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia, or Prevotel
271 from the separation of A. aphrophilus and A. actinomycetemcomitans through gain and loss of genes and
272  upregulate known biofilm determinants of A. actinomycetemcomitans to contribute to biofilm formation
273                               Transfer of A. actinomycetemcomitans to HA was not seen in subjects wit
274 ycetemcomitans on BECs showed transfer of A. actinomycetemcomitans to HA.
275           BECs are a likely reservoir for A. actinomycetemcomitans tooth colonization.
276                         We identified 691 A. actinomycetemcomitans transcriptional start sites and 21
277 -/-) mice compared to Mk2(+/+) mice after A. actinomycetemcomitans treatment.
278 ive periodontitis-associated Aggregatibacter actinomycetemcomitans triggered a type I IFN response fo
279 nctionally active in Escherichia coli and A. actinomycetemcomitans using truncated PhoA and Aae chime
280 lity to grow in biofilms is essential for A. actinomycetemcomitans virulence, strains that were defic
281               The overall carrier rate of A. actinomycetemcomitans was 54.4%, and the highly leukotox
282 ytic ability of murine mast cells against A. actinomycetemcomitans was confirmed.
283                           The presence of A. actinomycetemcomitans was demonstrated in vascular, bloo
284                                           A. actinomycetemcomitans was detected by polymerase chain r
285 Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans was examined using the agar overla
286 ia, Treponema denticola, and Aggregatibacter actinomycetemcomitans was identified by polymerase chain
287                                           A. actinomycetemcomitans was significantly associated with
288 rom the periodontal pathogen Aggregatibacter actinomycetemcomitans, was conjugated to an anti-human C
289 pression and influences biofilm growth of A. actinomycetemcomitans, we first defined the promoters fo
290      To determine the function of ltxC in A. actinomycetemcomitans, we generated an ltxC mutation in
291  Although no ncRNAs have been reported in A. actinomycetemcomitans, we propose that they are likely i
292              Lower levels of Aggregatibacter actinomycetemcomitans were observed in the PDT and SRP p
293 reptococcus constellatus, or Aggregatibacter actinomycetemcomitans, were resistant in vitro to doxycy
294 Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, were similarly reduced.
295 nst the periodontal pathogen Aggregatibacter actinomycetemcomitans when the bacteria were added to th
296 veloped one colony forming unit (CFU) for A. actinomycetemcomitans, whereas zero of 10 samples develo
297 letion of 530 bps in a primate isolate of A. actinomycetemcomitans, which produced leukotoxin equival
298 ptococcal metabolite hydrogen peroxide by A. actinomycetemcomitans, which stimulates a genetic progra
299 desorption, transfer, and reattachment of A. actinomycetemcomitans wild-type and mutant strains to BE
300  is to determine if patients positive for A. actinomycetemcomitans with moderate to advanced periodon

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top