戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 ategy-level reaction (the Mukaiyama directed aldol reaction).
2 the stereochemical outcome of the asymmetric aldol reaction.
3 pplications as a catalyst for the asymmetric aldol reaction.
4 gment utilized a chiral auxiliary based anti-aldol reaction.
5 gate to the traditional vinylogous Mukaiyama aldol reaction.
6 s, undergoing an N-selective nitrosocarbonyl aldol reaction.
7 rding the role of dimeric 2 in the Mukaiyama aldol reaction.
8 rted by mass spectrometry, is due to a retro-aldol reaction.
9 rols the absolute stereochemistry of the key aldol reaction.
10 diastereocontrol in a tandem chain-extension-aldol reaction.
11 sertion but is diverted by an intermolecular aldol reaction.
12  its use in the high-yielding aldehyde cross-aldol reaction.
13  for the divergent selectivity trends in the aldol reaction.
14 led to the development of a new tandem aldol-aldol reaction.
15 ation of the C-C bonds is a stepwise Michael-aldol reaction.
16 2) has been completed using a boron-mediated aldol reaction.
17 onal docking of the transition states of the aldol reaction.
18 chanism of the nornicotine-catalyzed aqueous aldol reaction.
19 electivity and represents a surrogate to the aldol reaction.
20 ences the selectivity of the lithium enolate aldol reaction.
21 icient norephedrine propionate boron enolate aldol reaction.
22 talysis, as demonstrated here for the chiral aldol reaction.
23 action, but is diverted by an intramolecular aldol reaction.
24 xylation, and a 1,3-anti-selective Mukaiyama aldol reaction.
25 active in ionic liquid/aqueous media for the aldol reaction.
26 hetic steps using a trifluoroacetate-release aldol reaction.
27 via a previously uncharacterized retro oxime-aldol reaction.
28 lectivity was observed in the intramolecular aldol reaction.
29 ences of the cyclic protecting groups on the aldol reactions.
30 ations have been tested as catalysts for the aldol reactions.
31 ly observed high syn diastereoselectivity of aldol reactions.
32 nprecedented mechanistic subtlety of aqueous aldol reactions.
33 (4R)-4-benzyl-2-oxazolidinone-mediated boron aldol reactions.
34 he use of two new asymmetric boron glycolate aldol reactions.
35 es as compared to secondary enamine-mediated aldol reactions.
36 hedrine were used in diastereoselective anti-aldol reactions.
37  by using antibody-catalyzed aldol and retro-aldol reactions.
38 ric allylation, ring closing metathesis, and aldol reactions.
39 additions, aza-Michael additions, and direct Aldol reactions.
40 ed as a substrate for divergent transannular aldol reactions.
41 electivity in Lewis-acid-catalyzed Mukaiyama aldol reactions.
42 through catalytic enantioselective reductive aldol reactions, a catalytic Negishi coupling, and a cat
43 or antibodies 84G3- and 93F3-catalyzed retro-aldol reactions, allowing the preparation of highly enan
44 d by a catalytic enantioselective vinylogous aldol reaction and a boron-mediated anti-aldol reaction
45 d excellent de by a zinc-ProPhenol-catalyzed aldol reaction and a palladium-catalyzed asymmetric ally
46              In addition, an asymmetric anti aldol reaction and a two-directional oxocarbenium ion/vi
47 age is used to assign stereochemistry of the aldol reaction and as the final step in a short synthesi
48                         Sequential enzymatic aldol reaction and bis-reductive amination leads to the
49 ted aminoacids followed by an intramolecular aldol reaction and cyclization has been developed.
50 ehydrogenation to the ketone, followed by an aldol reaction and hydrogenation of the resulting enone.
51 th aldol donor and acceptor molecules in the aldol reaction and is, therefore, of particular interest
52 mploying an intramolecular iodo halo-Michael aldol reaction and its merger with an ABCD ring fragment
53 New insight into the synthetically important aldol reaction and state-of-the-art methodology is prese
54 d mechanism of nornicotine-catalyzed aqueous aldol reactions and also provide the basis for future st
55 he antibody aldolases catalyzed a variety of aldol reactions and decarboxylations.
56 g Wittig, conjugate addition, and asymmetric aldol reactions and found to be reversible competitive i
57 an cyclization, a chiral Lewis acid mediated aldol reaction, and a facile amide union.
58 displayed a higher k(cat) value in the retro-aldol reaction, and a linear relationship was observed i
59 e cyclization, a selective 1,2-syn Mukaiyama aldol reaction, and a Noyori reduction.
60  thioester cleavage, sulfa-Michael addition, aldol reaction, and elimination reaction sequences to pr
61 oups that are known to undergo 1,2-addition, aldol reaction, and O-, N-, enolate-alpha-, and C(sp(2))
62 but-2-ene-1,4-dione surrogate, Nagao acetate aldol reaction, and Shiina lactonization.
63          This opens a new route to iterative aldol reactions, and it has been used for the synthesis
64 ts and the origins of the selectivity of the aldol reaction are discussed on the basis of the results
65 and an aqueous acid-catalyzed intramolecular aldol reaction are the key synthetic steps.
66 rimmins' titanium-mediated oxazolidinethione aldol reactions are disclosed.
67     In our current approach, two consecutive aldol reactions are used to fashion the acyl sector.
68 arbohydrates by using organocatalytic direct aldol reaction as a key step.
69  and minor nicotine metabolite, can catalyze aldol reactions at physiological pH.
70 mediated TMAL process versus other Mukaiyama aldol reactions based on our experimental evidence to da
71 by nature for biological chemistry including aldol reactions being essential for glycolysis, gluconeo
72 ed organocatalytic asymmetric domino Michael-aldol reaction between 3-substituted oxindoles and methy
73 eveloped that relies on a diastereoselective aldol reaction between a suitably protected hydantoin an
74 y of various organocatalysts to catalyze the aldol reaction between acetone and 2,2,2-trifluoromethyl
75 m, and its catalytic potential in the direct aldol reaction between acetone and 4-nitrobenzaldehyde w
76                                The Mukaiyama aldol reaction between aldehyde 60c and the TMS enol eth
77                                          The aldol reaction between benzaldehyde and acetone has been
78 ide (16S,17S)-adduct 51 and a boron-mediated aldol reaction between enone 10 and aldehyde 9, exploiti
79 A zinc-ProPhenol-catalyzed direct asymmetric aldol reaction between glycine Schiff bases and aldehyde
80 orresponding seco acid 32 originated from an aldol reaction between methyl ketone 6 and methyl (E)-3-
81 lphenoxide) (ATNP), in the doubly vinylogous aldol reaction between methyl-5-methyl-2-furoate and ald
82                       Stereoselective direct aldol reaction between optically pure d- or l-glyceralde
83 F fragments followed by a diastereoselective aldol reaction between the CDEF ketone and an AB aldehyd
84 in of diastereo- and enantioselectivities of aldol reactions between aldehydes catalyzed by histidine
85 d catalyst affords asymmetric intermolecular aldol reactions between unmodified ketones and various a
86 tive and proline that can eliminate the self-aldol reactions by suppressing an irreversible aldol con
87        The process features a one-pot tandem aldol reaction catalyzed by a deoxyribose-5-phosphate al
88          This process consists of an initial aldol reaction catalyzed by readily available l-histidin
89 tudies on several key steps, namely a direct aldol reaction catalyzed by the dinuclear zinc ProPhenol
90       The sources of asymmetric induction in aldol reactions catalyzed by cinchona alkaloid-derived a
91                     The transition states of aldol reactions catalyzed by vicinal diamines are charac
92 nti-allylic alcohols using a catalytic Evans aldol reaction conjoined with a relay-type ring-closing
93  reaction of the enolate to the other enone, aldol reaction, dehydration, and enamine formation will
94 chiral auxiliary mediated asymmetric acetate aldol reaction, dianion addition, and base mediated cycl
95   The influence of resident stereocenters on aldol reaction diastereoselection has been examined in d
96           The novel auxiliary 3 for the anti-aldol reaction does not exhibit the ordinary basicity of
97                    The unexpected retroaldol-aldol reaction during O-alkylation of a beta-hydroxy lac
98 ls-Alder reactions, conjugate additions, and aldol reactions employing these auxiliaries are now repo
99 lecular Suzuki reaction and stereocontrolled aldol reactions establishing the C19/C20 and C22/C23 ste
100 le starting materials and coupled through an aldol reaction followed by dehydration to afford stereos
101 termediate titanium enolate could undergo an aldol reaction followed by the intramolecular Schmidt re
102 s include a series of highly stereoselective aldol reactions followed by directed reductions to build
103 our propionate diastereoisomers combining an aldol reaction, followed by a stereoselective radical-ba
104 ough application of a tandem chain extension-aldol reaction, followed by CAN-mediated oxidative cleav
105 ved in the sequential process, the N-nitroso aldol reaction, followed by Michael addition.
106               Key steps include the Paterson-Aldol reaction for the rapid assembly of the carbonate 4
107 , lanthanide-catalyzed, asymmetric Mukaiyama aldol reactions for the synthesis of chiral beta-hydroxy
108                A subsequent alkylation or an aldol reaction furnished the disubstituted succinates wi
109 loyed as an asymmetric catalyst in Mukaiyama aldol reactions, generating enantioselectivities of up t
110 boron-mediated syn- and anti-stereoselective aldol reaction giving rise to various beta-hydroxyenones
111 , the site, diastereo-, and enantioselective aldol reaction has been elevated to the rarefied status
112                                 The directed aldol reaction has served as a fertile proving ground fo
113                                        Retro-aldol reactions have been implicated as the limiting ste
114                  Direct asymmetric catalytic aldol reactions have been successfully performed using a
115 merisation, transfer-hydrogenation and retro-aldol reactions have emerged as relevant transformations
116 velopments in the area of aqueous asymmetric aldol reactions highlighting two fundamental directions-
117                            By performing the aldol reaction in [Bmim]NTf(2) as a solvent, we report e
118 ficient methods for the asymmetric Mukaiyama aldol reaction in aqueous solution has received great at
119 in what can be considered an N-selective HNO-aldol reaction in up to quantitative yields.
120 oline catalysts carry out the intermolecular aldol reaction in water and provide high diastereoselect
121 e single transition state model observed for aldol reactions in organic solvent, the nornicotine-cata
122                             The mechanism of aldol reactions in pure water has been studied with dens
123 ng an organocatalytic cascade of Michael and aldol reactions in the presence of a chiral thiourea cat
124 , artificial catalysts designed and used for aldol reactions in water can be promising for the synthe
125 exible chiral catalysts for enantioselective aldol reactions in water, on water, and in the presence
126 a a highly diastereoselective boron-mediated aldol reaction/in situ reduction between ketone (S)-8 an
127 ous aldol reaction and a boron-mediated anti-aldol reaction influenced by remote stereocontrol.
128                     Primary enamine-mediated aldol reactions involve half-chair transition states wit
129 izing the 1,4-syn stereoselectivity of boron aldol reactions involving certain alpha-chiral methyl ke
130 es, and stereochemistries of amine-catalyzed aldol reactions involving enamine intermediates have bee
131  a Cu-catalyzed asymmetric O-nitrosocarbonyl aldol reaction is described.
132 iastereoselective solid-supported Evans' syn-aldol reactions is described, with aldol products being
133                The enantioselectivity in the aldol reactions is reversed if the reactions are carried
134                                The Mukaiyama-aldol reaction, known to require much more active Lewis
135     Transition states for the intramolecular aldol reactions leading to the formation of hydrindanone
136 yde 22 was employed for formaldehyde in this aldol reaction, leading to the beta-hydroxy aldehyde 20
137 ave been shown to be effective in catalysing aldol reactions, Morita-Baylis-Hillman reactions, conjug
138 ay for the base-catalyzed reverse vinylogous aldol reaction of (-)-(4abeta,5beta)-4,4a,5,6,7,8-hexahy
139 ,3'-bioxindoles are constructed by Mukaiyama aldol reaction of 2-siloxyindoles with isatins.
140                                           An aldol reaction of 33 with the enolate of 55 prepared wit
141                             A Mukaiyama-type aldol reaction of 35 with the chiral alpha-methyl aldehy
142                             In contrast, the aldol reaction of 6a and the chlorotitanium enolates of
143 was shown to promote enantioselective direct aldol reaction of 7-iodoisatin and 2,2-dimethyl-1,3-diox
144 tic system for the asymmetric direct crossed-aldol reaction of acetaldehyde in aqueous media using br
145 2 and 94 were (i) a Nagao asymmetric acetate aldol reaction of aldehyde 77 with thionothiazolidine 78
146                                The Mukayiama aldol reaction of aldehydes is efficiently accomplished
147                          The Mukaiyama cross-aldol reaction of alpha-fluoro-, alpha-chloro-, and alph
148 ons were a lithium-mediated, anti-selective, aldol reaction of aryl ester 8 (under Felkin-Anh inducti
149                                          The aldol reaction of beta-allenoate with use of a commercia
150              The approach involves a Michael-aldol reaction of beta-keto sulfones with enones followe
151 led 1,5-syn and -anti stereoinduction in the aldol reaction of beta-tris(trialkylsilyl)siloxy methyl
152  dendrons and was regiospecific in the retro-aldol reaction of dendron 21.
153                                          The aldol reaction of designed 2-(N-2-methylbenzyl-N-2,4,6-t
154 had significantly increased activity for the aldol reaction of erythrose with pyruvate compared with
155 ons were achieved by a lithium-mediated anti aldol reaction of ester 40 and aldehyde 13 under Felkin-
156 C(24)), was established via a boron-mediated aldol reaction of ethyl ketone 15 and formaldehyde, foll
157   The E ring was assembled via the Mukaiyama aldol reaction of F-ring methyl ketone 3 and the 2,3-syn
158 esigned serine-based organocatalyst promoted aldol reaction of hydroxyacetone leading to syn-diols.
159                                              Aldol reaction of hydroxybutanolide 31 with 2,4-hexadien
160                                              Aldol reaction of hydroxybutanolides 13b,c with 2,4-hexa
161 symmetric aminohydroxylation reactions or an aldol reaction of imidazolidinone 19.
162  base/Lewis acid catalysts in the asymmetric aldol reaction of isocyanoacetate nucleophiles.
163                           A novel tandem bis-aldol reaction of ketone with paraformaldehyde catalyzed
164 equence is a transition metal/base-catalyzed aldol reaction of methyl isocyanoacetate and difluoroace
165 s a highly stereoselective fragment assembly aldol reaction of methyl ketone 4 and aldehyde 5 to esta
166 (+)-diisopinocampheylboron chloride-mediated aldol reaction of methyl ketone 7 (overturning the inher
167 ynthesis features the highly stereoselective aldol reaction of methyl ketone 8b and aldehyde 60c and
168 r, has been achieved by employing Evans' syn-aldol reaction of N-acyl-(4R)-benzyl oxazolidin-2-one 3
169                               An uncatalyzed aldol reaction of N-substituted thiazolidinediones with
170 een reduced to practice for catalysis of the aldol reaction of silyl ketene acetals and silyl dienol
171 he stereoselective intramolecular vinylogous aldol reaction of the furoic ester 25a to give 30 or its
172                           The product of the aldol reaction of this aldehyde does not have a quenchin
173 e diastereoselectivity of the intramolecular aldol reaction of two differently sized monocyclic 1,3-d
174 o develop an efficient asymmetric vinylogous aldol reaction of unprecedented scope with respect to bo
175                The diastereoselectivities of aldol reactions of 2-methylpropanal with various enolate
176 nt of diastereo- and enantioselective direct aldol reactions of a broad range of substrates.
177                             Enantioselective aldol reactions of acetophenone with beta,gamma-unsatura
178 lectivity in Lewis acid-promoted (Mukaiyama) aldol reactions of achiral unsubstituted enolsilanes and
179  Catalytic, enantioselective, directed cross-aldol reactions of aldehydes are described.
180 c is a very efficient catalyst for Mukaiyama aldol reactions of aldehydes with trimethylsilyl enolate
181 stereocontrol can be realized for enolsilane aldol reactions of beta-alkoxy and beta-silyloxy aldehyd
182                               A study of the aldol reactions of boron enolates from methylketones tha
183  on the levels of 1,5-stereoselectivities of aldol reactions of boron enolates generated from beta-al
184                                              Aldol reactions of both the metastable dimer and the sta
185                           The boron-mediated aldol reactions of certain types of beta-alkoxy methyl k
186 eloped by routes involving fragment assembly aldol reactions of chiral aldehyde 6a and the chiral met
187  range of beta-hydroxy ketones deriving from aldol reactions of chiral aldehydes with a variety of ch
188  beta-alkoxy ketones were derived from nitro-aldol reactions of chiral alkoxy aldehydes with a series
189 h diastereoselectivity relying on asymmetric aldol reactions of chlorotitanium enolates of N-propiony
190 ted from two complex reactions involving the aldol reactions of cyclohexanone with benzaldehyde or wi
191  the highest ee's obtained to date in direct aldol reactions of glycine equivalents catalyzed by inex
192 laldehyde, but cannot readily catalyze retro-aldol reactions of hexoses and pentoses at these moderat
193 ed by determining the stereoselectivities of aldol reactions of ketone 1a (known to give 3,5-trans al
194  or Horner-Emmons olefinations, and directed aldol reactions of lithium enolates), the one-pot proces
195                          We also demonstrate aldol reactions of more demanding substrates with high a
196 rs that involves tandem Wittig rearrangement/aldol reactions of O-benzyl- or O-allylglycolate esters
197 gh trans- and syn-diastereoselectivities for aldol reactions of SF5-acetates with aldehydes in the pr
198                      Furthermore, vinylogous aldol reactions of silyl dienol ethers are also demonstr
199                                              Aldol reactions of syn aldehydes were thus observed to p
200 ed via substrate-controlled, boron-mediated, aldol reactions of the chiral ethyl ketones 10, 11, and
201                                              Aldol reactions of the corresponding anti aldehydes cont
202                   We conclude that the boron aldol reactions of unsubstituted boron enolates proceed
203 ate-temperature (around 100 degrees C) retro-aldol reactions of various hexoses in aqueous and alcoho
204 ach involving asymmetric Mannich-type (imino-aldol) reactions of methyl phenylacetate with N-tert-but
205 imental observation that the activity of the aldol reaction on mesoporous silica depends on the lengt
206 oes a catalyst-free stereoselective transfer aldol reaction on water.
207 rded aldehydes that underwent intramolecular aldol reactions on treatment with a NaOH solution to yie
208  combined with either a Sakurai reaction, an aldol reaction, or both is reported.
209 hetic utility of this chemistry, the racemic aldol reaction product was converted in five steps to a
210                Tandem intramolecular Sakurai-aldol reactions provide a concise and highly diastereose
211                                  A glycolate aldol reaction provided a diene useful for ring-closing
212                            Alternatively, an aldol reaction provided access to the same analogue in a
213                                syn-Selective aldol reactions realized by using either tertiary amines
214 een developed via asymmetric imino-aldol and aldol reactions, respectively, starting from protected a
215 ion of ketones and a tandem radical addition-aldol reaction sequence to access vicinal quaternary ste
216 cally controlled products via a domino aldol-aldol reaction sequence with excellent diastereoselectiv
217  feature a double diastereoselective acetate aldol reaction solely controlled by the chirality of the
218         The key step of this synthesis is an aldol reaction that constructs most of the skeleton and
219  fully intramolecular variant of the Sakurai-aldol reaction that creates four stereocenters, two new
220 ompounds was assembled via a stereoselective aldol reaction that unifies the C(1)-C(12) ketone fragme
221 erives from employment of diastereoselective aldol reactions that emanate from an 11 carbon piece.
222 e is a general lack of asymmetric vinylogous aldol reactions that tolerate variations of both the sil
223 rchetypical proline-catalyzed intramolecular aldol reaction, the Hajos-Parrish-Eder-Sauer-Wiechert re
224  models for diastereoselective methyl ketone aldol reactions, the discovery of a spontaneous Horner-W
225 line esters are efficient organocatalysts of aldol reactions, these results permit to modulate asymme
226 metric induction usually observed in acetate aldol reactions, this is of great synthetic utility and
227 hat is useful for monitoring the progress of aldol reactions through an increase in fluorescence.
228 preparation are: (i) a stereoselective boron-aldol reaction to afford the acyclic carbon skeleton of
229      Synthetic highlights include a Crimmins aldol reaction to construct the C-1' and C-14 centers, a
230  construction of C13-C14 (Z)-olefin, acetate aldol reaction to construct the C6-C7 bond and install t
231 g to form the C15-C16 carbon-carbon bond, an aldol reaction to construct the C6-C7 carbon-carbon bond
232 C5-C11 polyol fragment, a diastereoselective aldol reaction to control the stereogenic center at C13,
233 urnish the CD-ring fragment, and a Mukaiyama aldol reaction to deliver the FG-ring fragment.
234    These two species are then reunited by an aldol reaction to form a new C-C bond, yielding an aldeh
235  alpha-ketol rearrangement, and a late stage aldol reaction to furnish the complex cage-like framewor
236 he C-1' and C-14 centers, a Crimmins acetate aldol reaction to generate the hydroxy group at the C-13
237      The cyclobutanols readily undergo retro-aldol reaction to give delta-ketoesters.
238 ed in a stereoselective MgBr2-catalyzed anti-aldol reaction to install the required stereochemistry o
239  dinuclear Zn-catalyzed asymmetric glycolate aldol reaction to prepare the syn 1,2-diol, and an intra
240 lyst provides an optimum environment for the aldol reaction to proceed selectively in water, and the
241 pro-adapter undergoes a 38C2-catalyzed retro-aldol reaction to produce the vinylketone linker, which
242 sulfonimide, which undergoes Sn(II)-mediated aldol reactions to diastereoselectively afford the anti,
243                  This strategy relies on two aldol reactions to install the chiral centers at C3/C4 a
244 reoselective, dialkylboron chloride-mediated aldol reactions to produce the anti,anti-aldol adduct.
245 actonization, ozonolysis, and intramolecular aldol reaction) to a spiro lactone cyclopentenal.
246 ned for their ability to catalyze an aqueous aldol reaction under buffered conditions.
247  minor nicotine metabolite, can catalyze the aldol reaction under physiologically relevant conditions
248 cco and metabolite of nicotine, can catalyze aldol reactions under aqueous conditions.
249 eta-hydroxy alpha-amino acids via asymmetric aldol reactions under homogeneous conditions.
250 lyst has been developed for asymmetric cross-aldol reactions under neat conditions in ketone-ketone,
251 hexene inhibitor that features an asymmetric aldol reaction using a titanium enolate, diastereoselect
252 been accomplished through an unexpected anti aldol reaction using a titanium-mediated process.
253          An organocatalytic enantioselective aldol reaction using paraformaldehyde as C1-unit has bee
254 ploying asymmetric alkylation and asymmetric aldol reactions using chiral oxazolidinones as the key s
255 ctive lysine, 38C2 catalyzes aldol and retro-aldol reactions using the enamine mechanism of natural a
256  see text] Double diastereoselective acetate aldol reactions using the N-acetyl thiazolidinethione-ba
257 glyceraldehyde in situ from glycerol for the aldol reaction, using galactose oxidase catalyzed oxidat
258                          Moreover, a related aldol reaction was also developed.
259 reoselectivity of the tandem chain-extension-aldol reaction was determined through application of a C
260                         A salen-Al-catalyzed aldol reaction was employed to construct a chiral oxazol
261         An intramolecular L-proline-mediated aldol reaction was employed to generate the cis-configur
262       The dominant product of the asymmetric aldol reaction was the non-Evans syn adduct as determine
263 sis of the transition states involving these aldol reactions was performed utilizing DFT (density fun
264 electivity in Lewis-acid-catalyzed Mukaiyama aldol reactions was studied using density functional the
265                                   Asymmetric aldol reactions were conducted with the titanium enolate
266 (cat) values of the antibody-catalyzed retro-aldol reactions were correlated with the K(d) values, i.
267               Four vicinal diamine-catalyzed aldol reactions were examined.
268                  Intramolecular 1,8-diketone aldol reactions were studied as a tool for the construct
269                                  Three boron aldol reactions were used to assemble the linear carbon
270                               Boron-mediated aldol reactions were used to configure the three key fra
271 CBS reduction, and proline-catalyzed crossed-aldol reactions were utilized as key steps for the gener
272 re catalytically competent toward asymmetric aldol reactions, were selected as the catalytic unit.
273 zyme optimized to perform a multistep retrol-aldol reaction when engineered into a TIM barrel protein
274 mproved stereoselectivity was observed in an aldol reaction when using a Boc-protected amino aldehyde
275 is-tetrahydro-4-hydroxy-6-methyl-2-pyrone by aldol reaction with 2,4-hexadienal, epoxidation followed
276 combination of an asymmetric organocatalytic aldol reaction with a subsequent biotransformation towar
277 to an alkynone followed by an intramolecular aldol reaction with a tethered aldehyde to afford a cycl
278                         The enolates undergo aldol reaction with an aldehyde present in the reaction
279 th subsequent silyl trapping and a Mukaiyama aldol reaction with aqueous formaldehyde.
280  an organocatalytic one-pot Michael addition-aldol reaction with cheap 2-cyclohexenone and phenylacet
281 t 8 was demonstrated in a chemospecific anti-aldol reaction with cinnamaldehyde.
282 egy is based on two key reactions: first, an aldol reaction with formaldehyde in order to introduce s
283  The resulting enzyme catalyses a reversible aldol reaction with high stereoselectivity and tolerates
284 ates in a proline derivative-catalyzed cross aldol reaction with ketones.
285 reochemical features of the titanium enolate aldol reaction with several 3-azidoaldehyde substrates d
286 rated by reactive immunization, catalyze the aldol reaction with the efficiency of natural enzymes, b
287  HB were accepted as donors in FSA-catalyzed aldol reactions with a variety of azido- and Cbz-amino a
288 e (1) and characterization of representative aldol reactions with aldehydes and ketones.
289 tetrasubstituted enolborinates which undergo aldol reactions with aldehydes to form products with all
290 f aldolase antibodies that catalyze the same aldol reactions with antipodal selectivity were analyzed
291 ol-type reactions is the suppression of self-aldol reactions with enolizable aldehydes in reactions s
292 lyze both Mukaiyama-Mannich and oxocarbenium aldol reactions with high efficiency and enantioselectiv
293                    Highly diastereoselective aldol reactions with s-trioxane were also achieved with
294                                              Aldol reactions with trifluoroacetophenones as acceptors
295 e been explored as donors in organocatalytic aldol reactions with various aldehyde and ketone accepto

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top