コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 in essential fatty acids (alpha-linoleic and alpha-linolenic acids).
2 nfidence interval, 0.42 to 0.88) for dietary alpha-linolenic acid.
3 eic acid and by increasing the proportion of alpha-linolenic acid.
4 y-18:2Delta(9,15)) in cultures supplied with alpha-linolenic acid.
5 ts products, all of which are metabolites of alpha-linolenic acid.
6 Major fatty acids were linoleic acid and alpha-linolenic acid.
7 cid linoleic acid and the omega-3 fatty acid alpha-linolenic acid.
8 atty acids (EFA), arachidonic, linoleic, and alpha-linolenic acids.
9 tial fatty acids, arachidonic, linoleic, and alpha-linolenic acids.
11 vealed high levels of linoleic acid (4.72%), alpha-linolenic acid (10.8%) and phytols (12.0%), as wel
13 nent exception being a relative reduction in alpha-linolenic acid (18:3(cisDelta9,12,15)) in both the
14 fatty acids (PUFAs) linoleic acid (18:2) and alpha-linolenic acid (18:3) in triacylglycerols (TAG) ar
15 entified the major chloroplast galactolipid: alpha-linolenic acid (18:3)-7Z,10Z,13Z-hexadecatrienoic
16 ry was noticed in the concentration level of alpha-linolenic acid (18:3, ALA), arachidonic acid (20:4
17 t the n-3 fatty acids, the concentrations of alpha-linolenic acid (18:3n-3) and docosahexaenoic acid
18 n laboratory animals and humans suggest that alpha-linolenic acid (18:3n-3) may reduce the risk of ar
19 h the levels for linoleic acid (18:2n-6) and alpha-linolenic acid (18:3n-3) remained unaltered, there
25 erythrocytes, r(s)=0.24; plasma, r(s)=0.25), alpha-linolenic acid (18:3n-3; erythrocytes, r(s)=0.18;
27 lect dietary intake (linoleic acid, 18:2n-6; alpha-linolenic acid, 18:3n-3; eicosapentaenoic acid, 20
28 c acid, 6 of 8 dogs were protected, and with alpha-linolenic acid, 6 of 8 dogs were also protected (P
30 by the diet or endogenous biosynthesis from alpha-linolenic acid, accretes during the perinatal brai
31 s to determine whether vegetable oil-derived alpha-linolenic acid added to a diet enriched in n-6 fat
32 d by (13)C nuclear magnetic resonance (NMR), alpha-linolenic acid (ALA) and docosapentaenoic acid (DP
33 tituents such as gamma-linolenic acid (GLA), alpha-linolenic acid (ALA) and stearidonic acid (SA), as
34 d the association between the n-3 fatty acid alpha-linolenic acid (ALA) and the incidence of congesti
35 revious studies indicated that the intake of alpha-linolenic acid (ALA) can alter the concentration o
36 d diets containing 3.5% or 5.3% of energy as alpha-linolenic acid (ALA) for two consecutive 14-wk per
37 ll and concentrations of total n-3 PUFAs and alpha-linolenic acid (ALA) in erythrocytes, which were o
38 (P < 0.000001), whereas the availability of alpha-linolenic acid (ALA) increased from 0.39% to 0.72%
39 ncrement: 0.99; 95% CI: 0.88, 1.10], whereas alpha-linolenic acid (ALA) intake was inversely associat
43 hway and consequently modifies the effect of alpha-linolenic acid (ALA) on myocardial infarction (MI)
44 he control group (n = 12) received either 8% alpha-linolenic acid (ALA) or 0.6% DHA, both of which su
46 ication of four minor geometrical isomers of alpha-linolenic acid (ALA) present in linseed oil sample
47 reviously we reported that dietary intake of alpha-linolenic acid (ALA) reduces atherogenesis and inh
48 We previously reported that a diet high in alpha-linolenic acid (ALA) reduces lipid and inflammator
49 tudy is to develop vegetable oil blends with alpha-linolenic acid (ALA) rich Garden cress oil (GCO) a
50 mportance of the conversion of plant-derived alpha-linolenic acid (ALA) to EPA and DHA is debated.
51 nversion of the plant-derived n-3 fatty acid alpha-linolenic acid (ALA) to EPA and DHA is very low, n
54 n EPIC-InterAct, among long-chain n-3 PUFAs, alpha-linolenic acid (ALA) was inversely associated with
55 ng relative risks (95% CIs) for phospholipid alpha-linolenic acid (ALA) were 1.0 (reference), 0.93 (0
57 ega-3 FA) source, containing 1.63 g/100mL of alpha-linolenic acid (ALA), 0.73 g/100 mL of stearidonic
60 ntagineum (EO), or rapeseed oil (RO) rich in alpha-linolenic acid (ALA), but a poor source of LC-PUFA
61 about the association between adipose tissue alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA),
62 ave been made for n-3 fatty acids, including alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA),
64 with regard to any differential influence of alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA),
65 r vitamin B-12, retinol, linoleic acid (LA), alpha-linolenic acid (ALA), or ratios of betaine to chol
66 arachidonic acid to the omega3 fatty acids, alpha-linolenic acid (ALA), stearidonic acid, eicosatetr
67 s of the metabolic syndrome, but the role of alpha-linolenic acid (ALA), the metabolic precursor of E
68 oth LCPUFA and their precursor omega-3 PUFA, alpha-linolenic acid (ALA), whereas terrestrial insects
70 biosynthesized from n-3 FAs such as 18:3n-3 [alpha-linolenic acid (ALA)] or 20:5n-3 [eicosapentaenoic
71 f the plant-derived omega-3 (n-3) fatty acid alpha-linolenic acid (ALA, 18:3; n-3) may reduce coronar
72 (Linum usitatissimum L.) has high amounts of alpha-linolenic acid (ALA; 18:3(cis)(Delta9,12,15)) and
73 oximately 0.7% of energy), of which 1.4 g is alpha-linolenic acid (ALA; 18:3) and 0.1-0.2 g is eicosa
75 ounsaturated fatty acid; MUFA), MUFA + 3.5 g alpha-linolenic acid (ALA; MUFA + ALA) from high-ALA can
76 8:2 conjugated linoleic (CLA-1.4 times), and alpha-linolenic acids (ALA-1.6 times), as compared to co
80 etween the ratio of dietary linoleic acid to alpha-linolenic acid and BMD at the hip in 642 men, 564
81 also reported an inverse association between alpha-linolenic acid and cardiovascular disease morbidit
82 omega-3 polyunsaturated fatty acids such as alpha-linolenic acid and docosahexaenoic acid (DHA) are
84 lipins from arachidonic acid, linoleic acid, alpha-linolenic acid and docosahexaenoic acid PUFAs are
85 act of P. chrysogenum afforded the compounds alpha-linolenic acid and ergosterol endoperoxide, which
86 protoporphyrin IX-reconstituted muCOX-2 with alpha-linolenic acid and G533V muCOX-2 with AA indicate
87 deficient in the essential fatty acids (EFA) alpha-linolenic acid and linoleic acid are consumed.
88 being impacted and altered in EAE, including alpha-linolenic acid and linoleic acid metabolism (PUFA)
89 ry measures to increase and decrease intakes alpha-linolenic acid and linoleic acid, respectively, to
90 Diet-tissue correlation coefficients for alpha-linolenic acid and linoleic acid, respectively, we
93 The inverse association observed between alpha-linolenic acid and nonfatal acute MI suggests that
94 mined the association between adipose tissue alpha-linolenic acid and nonfatal acute myocardial infar
95 ne the association between dietary intake of alpha-linolenic acid and risk of fatal ischemic heart di
96 The specificity of the association between alpha-linolenic acid and SCD supports the hypothesis tha
98 ntaenoic acid, and docosahexaenoic acid] and alpha-linolenic acid) and n-6 PUFAs (linoleic acid and a
99 y, chia seed flour, which is rich in omega-3 alpha-linolenic acid, and common and tartary buckwheat f
100 bsolute amounts of dietary linoleic acid and alpha-linolenic acid are of relevance to the efficiency
101 ed the association between dietary intake of alpha-linolenic acid assessed via updated food-frequency
103 yed similar signaling properties to the LCFA alpha-linolenic acid at human FFA4 across various assay
104 ) (beta = -0.21, P = 0.060) and plant-based (alpha-linolenic acid) (beta = -0.33, P = 0.024) fatty ac
105 urthermore, docosahexaenoic acid (C22:6n-3), alpha-linolenic acid (C18:3n-3), conjugated linoleic aci
107 tty acid in some vegetable oils, cis-9,12,15-alpha-linolenic acid (C18:3omega-3), administered intrav
108 yoghurt and low-fat milk always possessed an alpha-linolenic acid (C18:3omega3) content above the min
109 from 29.94 +/- 1.14% to 36.85 +/- 1.13% and alpha-linolenic acid concentrations increased from 0.78
110 s that consumption of vegetable oils rich in alpha-linolenic acid confers important protection agains
111 roscopy data, stable-isotope data (IRMS) and alpha-linolenic acid content (gas chromatography) was us
112 of milk protein and milk fat as well as the alpha-linolenic acid content of these samples were deter
115 acid (EPA) and docosahexaenoic acid, but not alpha-linolenic acid, decrease on a double-logarithmic s
118 nity for the polyunsaturated n-3 fatty acids alpha-linolenic acid, eicosapentaenoic acid, docosahexae
120 fused in situ with arterial blood containing alpha-linolenic acid, EPA, or docosahexaenoic acids.
123 jects in the top quintiles of adipose tissue alpha-linolenic acid had a lower risk of MI than those i
124 s was disrupted in the tocopherol-deficient, alpha-linolenic acid-hypersensitive Synechocystis mutant
125 (95% confidence interval, 0.25 to 0.67) for alpha-linolenic acid in adipose tissue and 0.61 (95% con
130 supplements and also formed by conversion of alpha-linolenic acid in soy and rapeseed (canola) oils,
131 ions of some FAs but lower concentrations of alpha-linolenic acid in their subcutaneous adipose tissu
132 was accompanied by a continuous increase of alpha-linolenic acid in total lipids, whereas no such ac
133 ies to be more effective than its precursor, alpha-linolenic acid, in enriching membranes with eicosa
134 tricular arrhythmia, it is not known whether alpha-linolenic acid influences ventricular repolarizati
135 ompared with women in the lowest quintile of alpha-linolenic acid intake, those in the highest 2 quin
136 mega-3 fatty acids and plant omega-3 such as alpha-linolenic acid is associated with lower risk of my
139 ports the hypothesis that a higher intake of alpha-linolenic acid is protective against fatal IHD.
141 nction with a high ratio of linoleic acid to alpha-linolenic acid, it would be prudent to recommend d
142 AP knockout A. thaliana plants show elevated alpha-linolenic acid levels and marked reproductive defe
144 (EPA) may be biosynthesized from a precursor alpha-linolenic acid (LNA) or obtained preformed in the
146 ta suggest that increasing dietary intake of alpha-linolenic acid may reduce the risk of SCD but not
147 that provide polyunsaturated fats, including alpha-linolenic acid, may reduce the risk of fatal IHD.
148 n of wild-type sensitivity against exogenous alpha-linolenic acid of the otherwise resistant Deltafat
149 e available for evaluation of the effects of alpha-linolenic acid on serum lipid concentrations.
150 ntaenoic acid and docosahexaenoic acid or as alpha-linolenic acid) on cardiovascular disease outcomes
151 id and docosahexaenoic acid) and plant oils (alpha-linolenic acid) on human serum lipids and lipoprot
153 Flaxseed oil is a rich source of 18:3n-3 (alpha-linolenic acid, or ALA), which is ultimately conve
154 0(palmitic acid),22:6n-3(DHA) PC > di18:3n-3(alpha-linolenic acid) PC > di22:6n-3PC with a range in p
156 rom fish or fish-oil supplements, but not of alpha-linolenic acid, reduces the rates of all-cause mor
157 d omega-3 (omega3) fatty acids (linoleic and alpha-linolenic acid, respectively) in the cytochrome P4
159 igh-oleic acid soybean oil (HiOleic-SO), low-alpha-linolenic acid soybean oil (LoALA-SO), or partiall
161 presented a significantly higher content of alpha-linolenic acid than P. volubilis (51.3 and 45.6 g/
162 the essential fatty acids linoleic acid and alpha-linolenic acid to arachidonic acid and DHA, respec
163 relevance to the efficiency of conversion of alpha-linolenic acid to eicosapentaenoic acid and docosa
164 The previously recognized capability of alpha-linolenic acid to stimulate the generation of adip
165 ignificantly increased the concentrations of alpha-linolenic acid, total polyunsaturated fatty acids
166 PUFA dihomo-gamma-linolenic acid; gamma- and alpha-linolenic acids, two popular dietary PUFAs, were l
167 LA uptake and [3H]thymidine incorporation by alpha-linolenic acid was 0.18 and 0.25 mM, respectively.
168 acid and other nutrients, a higher intake of alpha-linolenic acid was associated with a lower relativ
173 ng long-chain n-3 fatty acids, the intake of alpha-linolenic acid was inversely associated with the r
174 cosahexaenoic acid + docosapentaenoic acid + alpha-linolenic acid) was associated with lower ventricu
176 negar salad dressing, an important source of alpha-linolenic acid, was associated with reduced risk o
178 ted fatty acids (rich in oleic, linoleic and alpha-linolenic acids) were supplemented to dairy ewes a
179 om polyunsaturated fatty acids (linoleic and alpha-linolenic acid), whereas for "Vatikiotiko" saturat
180 were highly resistant to externally provided alpha-linolenic acid, whereas wild-type cells bleached u
181 site and is highly active with linoleic and alpha-linolenic acids (which occur naturally in Anabaena
182 turated free fatty acids (FFAs) linoleic and alpha-linolenic acid, which we detected in F. graminearu
184 acid, docohexaenoic acid, linoleic acid, and alpha-linolenic acid, with incident CVD and all-cause mo
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。