戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 s fermentans is the first known cellulolytic archaeon.
2 ologous recombination in a hyperthermophilic archaeon.
3 ubunit of the archaeal aIF2 from the cognate archaeon.
4 phylogenetics indicates that the host was an archaeon.
5 of chaperonin subunits ever described for an archaeon.
6 ecific aminopeptidase to be purified from an archaeon.
7 s is a strictly anaerobic, methane-producing archaeon.
8 the existence of a salvaging pathway in this archaeon.
9 ot been determined for any hyperthermophilic archaeon.
10  for the conservation of this property in an archaeon.
11 involved in the one-carbon metabolism of the archaeon.
12 erved block in cobamide biosynthesis in this archaeon.
13 ed for an alternate mevalonate pathway in an archaeon.
14 NA processing sites (PSSs) in a methanogenic archaeon.
15 ikely the replicative DNA polymerase in this archaeon.
16 red HARP by horizontal gene transfer from an archaeon.
17 y, the two archaeal histones present in this archaeon.
18 rimordial Orai sequence in hyperthermophilic archaeons.
19 e (casposase) encoded by the casposon of the archaeon Aciduliprofundum boonei Oligonucleotide duplexe
20 obium limicola, four other bacteria, and one archaeon additionally exhibit an H(+)-pumping activity i
21                        The hyperthermophilic archaeon Aeropyrum pernix (A. pernix) can grow throughou
22 hydrogenase (ADH) from the hyperthermophilic archaeon Aeropyrum pernix has been solved by the multipl
23 stal structures of the ORC2 protein from the archaeon Aeropyrum pernix in complexes with ADP or a non
24 shaped virus (ACV), of the hyperthermophilic archaeon Aeropyrum pernix, with a virion architecture no
25  mobile elements, have close similarities to archaeon and eukaryotic miniature inverted repeat transp
26 s is a strictly anaerobic, methane-producing archaeon and facultative autotroph capable of biosynthes
27 cts of arsenic resistance in this halophilic archaeon and technical improvements in our capability fo
28 ndrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the
29 acterized from a hyperthermophile or from an archaeon, and the results are the first demonstration th
30 icroorganisms, including one eukaryote, four archaeons, and 11 eubacteria, have been completely seque
31                        The hyperthermophilic archaeon Archaeoglobus fulgidus contains an L-Ala dehydr
32 sterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-ex
33                      In the sulfate-reducing archaeon Archaeoglobus fulgidus it is a metal-dependent
34 ely with that from the protein Af1503 of the archaeon Archaeoglobus fulgidus or the Tsr receptor.
35 heat shock response of the hyperthermophilic archaeon Archaeoglobus fulgidus strain VC-16 was studied
36 104 residue SRP19 from the hyperthermophilic archaeon Archaeoglobus fulgidus, designated as Af19, was
37 he soluble fraction of the hyperthermophilic archaeon Archaeoglobus fulgidus.
38 nococcus jannaschii and the sulfate-reducing archaeon Archaeoglobus fulgidus.
39   The Y-family DNA polymerase Dpo4, from the archaeon bacterium Sulfolobus solfataricus, is a member
40 ed for a hyperthermophile or a nonhalophilic archaeon by using the 2,065 open reading frames (ORFs) t
41 ransport system for corrinoids and that this archaeon can synthesize cobamides de novo under aerobic
42  Here we report that these proteins from the archaeon Candidatus 'Caldiarchaeum subterraneum' operate
43 wledge, of an ACD from the hyperthermophilic archaeon Candidatus Korachaeum cryptofilum.
44 ft genome sequence for the ammonia-oxidizing archaeon "Candidatus Nitrosopumilus salaria" BD31, which
45          An ammonia-oxidizing, carbon-fixing archaeon, Candidatus "Nitrosopumilus maritimus," recentl
46 oth RNase P forms from the same bacterium or archaeon could be verified in two selected cases.
47  pathways, suggesting dependence on the host archaeon Cuniculiplasma divulgatum.
48                            The preference of archaeon DNA polymerases for acyclic analogs was exploit
49                                     Family B archaeon DNA polymerases Vent, Deep Vent, 9 degrees N an
50 oarchaeum limnia" BG20, an ammonia-oxidizing archaeon enriched in culture from low-salinity sediments
51 randed DNA-binding protein, FacRPA2, in this archaeon exhibited the wrapping mode.
52 ic change that distinguishes the acidophilic archaeon Ferroplasma acidarmanus fer1 from an environmen
53 erobic respiration using DMSO and TMAO in an archaeon for the first time.
54                     Until recently, the only archaeon for which a bona fide origin of replication was
55                      This is only the second archaeon for which PAM sequences have been determined, a
56  the first crenarchaeote and only the second archaeon found to have a transporter of the phosphotrans
57                        This virus infects an archaeon Haloarcula hispanica that was isolated from a h
58                     The extremely halophilic archaeon Halobacterium NRC-1 can switch from aerobic ene
59 ation resistance in the extremely halophilic archaeon Halobacterium NRC-1 withstanding up to 110 J/m2
60 damage and oxidative stress responses of the archaeon Halobacterium salinarum exposed to ionizing rad
61 -driven proton pump bacteriorhodopsin in the archaeon Halobacterium salinarum requires coordinate syn
62 overy of the first sensory rhodopsins in the archaeon Halobacterium salinarum, genome projects have r
63                                 In the model archaeon Halobacterium salinarum, the transcription fact
64  light-induced proton pump in the halophilic archaeon Halobacterium salinarum.
65 39006, identifying how this differs from the archaeon Halobacterium salinarum.
66 und in the purple membrane of the salt marsh archaeon Halobacterium salinarum.
67 ology of the TrmB metabolic GRN in the model archaeon Halobacterium salinarum.
68 ton pump found in the purple membrane of the archaeon Halobacterium salinarum.
69 of the cbiZ gene in the extremely halophilic archaeon Halobacterium sp. strain NRC-1 blocked the abil
70                 The genome of the halophilic archaeon Halobacterium sp. strain NRC-1 encodes homologs
71 lyses of mutants of the extremely halophilic archaeon Halobacterium sp. strain NRC-1 showed that open
72                  A cbiP mutant strain of the archaeon Halobacterium sp. strain NRC-1 was auxotrophic
73 nsive postgenomic investigation of the model archaeon Halobacterium sp. strain NRC-1, we used whole-g
74 rial CobC enzyme in the extremely halophilic archaeon Halobacterium sp. strain NRC-1.
75 noid utilization in the extremely halophilic archaeon Halobacterium sp. strain NRC-1.
76 ed from the serine and tyrosine tRNAs of the archaeon Haloferax volcanii are active in suppression of
77                               The halophilic archaeon Haloferax volcanii encodes two related proteaso
78 at the SecD and SecF components in the model archaeon Haloferax volcanii form a cytoplasmic membrane
79                               The halophilic archaeon Haloferax volcanii produces three different pro
80                               The halophilic archaeon Haloferax volcanii synthesizes two different al
81                        Here we use the model archaeon Haloferax volcanii to demonstrate that its endo
82 atural cell fusion ability of the halophilic archaeon Haloferax volcanii we were able to examine this
83  the genetically and biochemically tractable archaeon Haloferax volcanii were cloned, providing the t
84                     We show here that in the archaeon Haloferax volcanii, compaction and reorganizati
85 iquitin, that form protein conjugates in the archaeon Haloferax volcanii.
86  the CRISPR-Cas I-B system of the halophilic archaeon Haloferax volcanii.
87 analysis of these proteins in the halophilic archaeon, Haloferax volcanii.
88 under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in tw
89 genes, polarity in operon expression in this archaeon has been established by both microarray hybridi
90 arly relevant for S. acidocaldarius, as this archaeon has natural competence for OMT, encodes no MutS
91 c model for a flagellar-like filament of the archaeon Ignicoccus hospitalis from a reconstruction at
92 opy to study the adhesion filaments from the archaeon Ignicoccus hospitalis.
93 hat Methanobrevibacter smithii, the dominant archaeon in the human gut ecosystem, affects the specifi
94  an ancient horizontal gene transfer from an archaeon into an early Firmicute lineage.
95 rom Pyrococcus furiosus, a hyperthermophilic archaeon, into the nuclei of oocytes from the aquatic fr
96 f modifications in t+rRNAs in the halophilic archaeon is surprisingly low when compared with other Ar
97                             Cysteine in this archaeon is synthesized primarily via the tRNA-dependent
98                               A methanogenic archaeon isolated from deep-sea hydrothermal vent fluid
99 ent uranium, the extremely thermoacidophilic archaeon Metallosphaera prunae, originally isolated from
100 ve genes of the carbon fixation cycle of the archaeon Metallosphaera sedula, which grows autotrophica
101  resolvases from the moderately thermophilic archaeon Methanobacterium thermoautotrophicum and demons
102 iated with the cobY gene of the methanogenic archaeon Methanobacterium thermoautotrophicum strain Del
103 ants of the beta-class enzyme (Cab) from the archaeon Methanobacterium thermoautotrophicum.
104 ation of an RNA ligase from the thermophilic archaeon, Methanobacterium thermoautotrophicum.
105 ds true for the c ring from the methanogenic archaeon Methanobrevibacter ruminantium, whose c subunit
106           Certain bacteria, specifically the archaeon Methanobrevibacter smithii, have enhanced abili
107 microbes: methanogens including the dominant archaeon, Methanobrevibacter smithii, a polyphyletic gro
108 roides thetaiotaomicron and the methanogenic archaeon, Methanobrevibacter smithii.
109  trillions of microbes including a prominent archaeon, Methanobrevibacter smithii.
110 of some of these RPRs, such as that from the archaeon Methanocaldococcus jannaschii (Mja), to catalyz
111 e guanylyltransferase (CobY) enzyme from the archaeon Methanocaldococcus jannaschii (MjCobY) in compl
112                 Using the Trm5 enzyme of the archaeon Methanocaldococcus jannaschii (previously MJ088
113              In the case of the methanogenic archaeon Methanocaldococcus jannaschii as well as most m
114 d catalytically active box C/D sRNP from the archaeon Methanocaldococcus jannaschii by single-particl
115 J1117 of the hyperthermophilic, methanogenic archaeon Methanocaldococcus jannaschii encodes a CobY pr
116                        The hyperthermophilic archaeon Methanocaldococcus jannaschii encodes a potent
117 olation of a non-synthetase protein from the archaeon Methanocaldococcus jannaschii that was copurifi
118                                          The archaeon Methanocaldococcus jannaschii uses three differ
119  the structure of Dim1 from the thermophilic archaeon Methanocaldococcus jannaschii.
120 etected Pth-like activity in extracts of the archaeon Methanocaldococcus jannaschii.
121 sphoesterase (PE), and Ku from a mesophillic archaeon, Methanocella paludicola (Mpa).
122 ng (NHEJ) machinery from the closely related archaeon, Methanocella paludicola, allowed efficient Cas
123                             The methanogenic archaeon Methanococcoides burtonii contains a Rubisco is
124 psychrotolerant archaea, specifically in the archaeon Methanococcoides burtonii grown at 4 and 23 deg
125               MAT from the hyperthermophilic archaeon Methanococcus jannaschii (MjMAT) is a prototype
126 n identified in the hyperthermophilic marine archaeon Methanococcus jannaschii and shown to catalyze
127                        The hyperthermophilic archaeon Methanococcus jannaschii encodes two putative t
128                        The hyperthermophilic archaeon Methanococcus jannaschii has two members of thi
129  both Salmonella serovar Typhimurium and the archaeon Methanococcus jannaschii were purified and show
130              Here we show that ThiI from the archaeon Methanococcus maripaludis contains a [3Fe-4S] c
131 fixation, or switch-off, in the methanogenic archaeon Methanococcus maripaludis does not involve dete
132    Nitrogen assimilation in the methanogenic archaeon Methanococcus maripaludis is regulated by trans
133 rogenase, or switch-off, in the methanogenic archaeon Methanococcus maripaludis requires both nifI(1)
134 rated for the hydrogenotrophic, methanogenic archaeon Methanococcus maripaludis S2 using a derivative
135 the bacterium Desulfovibrio vulgaris and the archaeon Methanococcus maripaludis were established and
136                          In the methanogenic archaeon Methanococcus maripaludis, growth with ammonia
137                       Using the methanogenic archaeon Methanococcus maripaludis, we show that deletio
138               However, the hyperthermophilic archaeon Methanopyrus kandleri harbors 30 (out of 34) tR
139 anipulation of the slow-growing methanogenic archaeon Methanosarcina acetivorans Introduction of both
140 aracterization of McrA from the methanogenic archaeon Methanosarcina acetivorans lacking tfuA and/or
141              Here, we study the methanogenic archaeon Methanosarcina acetivorans using assays of ATP
142 dy, the protein MA4561 from the methanogenic archaeon Methanosarcina acetivorans was originally predi
143 (TBP) homologs (TBP1, TBP2, and TBP3) in the archaeon Methanosarcina acetivorans were investigated by
144 subunits, termed Hsp60-4 and Hsp60-5, in the archaeon Methanosarcina acetivorans, which also has Hsp6
145 d the clamp loader (RFC) from the mesophilic archaeon Methanosarcina acetivorans.
146 his enzyme family from the methane-producing archaeon Methanosarcina acetivorans.
147 describe a new form of clamp loader from the archaeon Methanosarcina acetivorans.
148 n A homologs, RPA1, RPA2, and RPA3, from the archaeon Methanosarcina acetivorans.
149     Monomethylamine methyltransferase of the archaeon Methanosarcina barkeri contains a rare amino ac
150                          In the methanogenic archaeon Methanosarcina barkeri Fusaro, the N5-methyl-te
151 ined onto the chromosome of the methanogenic archaeon Methanosarcina barkeri.
152 stantly related class II photolyase from the archaeon Methanosarcina mazei (MmCPDII) as well as plant
153 ading frame (ORF) Mm2058 of the methanogenic archaeon Methanosarcina mazei strain Go1 was shown in vi
154            The cbiZ gene of the methanogenic archaeon Methanosarcina mazei strain Gol was cloned, was
155 (dnaK) locus of the mesophilic, methanogenic archaeon Methanosarcina mazeii.
156  phosphotransacetylase from the methanogenic archaeon Methanosarcina thermophila in complex with the
157 n(II)-containing carbonic anhydrase from the archaeon Methanosarcina thermophila suggests that a very
158 zyme was purified from the methane-producing archaeon Methanosarcina thermophila, and the N-terminal
159 ophobacter fumaroxidans and the methanogenic archaeon Methanospirillum hungatei.
160                     The MCM complex from the archaeon Methanother-mobacter thermautotrophicus is a mo
161  transmembrane channel protein AqpM from the archaeon Methanothermobacter marburgensis, we determined
162 ly fractionated extracts of the thermophilic archaeon Methanothermobacter thermautotrophicus (Mth).
163                 Only one MCM is found in the archaeon Methanothermobacter thermautotrophicus (mtMCM),
164 terminal portion of the MCM complex from the archaeon Methanothermobacter thermautotrophicus (N-mtMCM
165         Open reading frame 48 (ORF48) in the archaeon Methanothermobacter thermautotrophicus encodes
166 licase activity of an MCM homologue from the archaeon Methanothermobacter thermautotrophicus is inhib
167 minichromosome maintenance helicase from the archaeon Methanothermobacter thermautotrophicus required
168                   The Cdc6 proteins from the archaeon Methanothermobacter thermautotrophicus were pre
169 east two-hybrid screen was performed for the archaeon Methanothermobacter thermautotrophicus.
170 winding of individual DNA helicases from the archaeons Methanothermobacter thermautotrophicus (Mth) a
171 d that the ungapped genome of the ARMAN-like archaeon Mia14 has lost key metabolic pathways, suggesti
172 phile Halobacterium salinarum, a salt-loving archaeon, mounts a specific response to scavenge iron fo
173                                   The marine archaeon Nanoarchaeum equitans is dependent on direct ph
174                             In the parasitic archaeon Nanoarchaeum equitans, these domains occur as s
175 A (tRNA) 5' maturation, is challenged in the archaeon Nanoarchaeum equitans.
176 voidance motility response in the halophilic archaeon Natronobacterium pharaonis.
177 matching the genome of the ammonia-oxidizing archaeon Nitrosopumilus maritimus dominated the transcri
178                 Here we show that the marine archaeon Nitrosopumilus maritimus encodes a pathway for
179 rt a cupredoxin isolated from the nitrifying archaeon Nitrosopumilus maritimus SCM1, called Nmar1307,
180 tivorans strain C2A is a marine methanogenic archaeon notable for its substrate utilization, genetic
181 lic, strictly hydrogenotrophic, methanogenic archaeon of ancient lineage isolated from a deep-sea hyd
182  application of DNA microarrays to either an archaeon or a hyperthermophile.
183 e Archaea, supporting hypotheses in which an archaeon participated in eukaryotic origins by founding
184                            This methanogenic archaeon possesses two oxaloacetate-synthesizing enzymes
185 ese findings demonstrate a link between this archaeon, prioritized bacterial utilization of polysacch
186  12.7-kDa protein from the hyperthermophilic archaeon Pyrobaculum aerophilum adopts a novel fold cons
187                        The hyperthermophilic archaeon Pyrobaculum aerophilum used 20 mM Fe(III) citra
188 r disulfide bonding in the hyperthermophilic archaeon Pyrobaculum aerophilum.
189 n of PcalRG, a novel reverse gyrase from the archaeon Pyrobaculum calidifontis.
190                        The hyperthermophilic archaeon Pyrobaculum islandicum uses the citric acid cyc
191 stem, was predicted in the hyperthermophilic archaeon Pyrobaculum.
192 tructure of RPP21 from the hyperthermophilic archaeon Pyrococcus furiosus ( Pfu) using conventional a
193                         The Argonaute of the archaeon Pyrococcus furiosus (PfAgo) belongs to a differ
194 a coli (EcMetAP-I) and the hyperthermophilic archaeon Pyrococcus furiosus (PfMetAP-II) was investigat
195 yl aminopeptidase from the hyperthermophilic archaeon Pyrococcus furiosus (PfMetAP-II; EC 3.4.11.18)
196 the RNase P holoenzyme from the thermophilic archaeon Pyrococcus furiosus (Pfu) and furthered our und
197 We discovered a thermostable enzyme from the archaeon Pyrococcus furiosus (Pfu), which increases yiel
198 erated rubredoxin from the hyperthermophilic archaeon Pyrococcus furiosus and the mesophilic bacteriu
199 tracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus contain high specific activ
200 l genome annotation of the hyperthermophilic archaeon Pyrococcus furiosus contained 2,065 open readin
201           The genome of the hyperthermophile archaeon Pyrococcus furiosus encodes two transcription f
202                        The hyperthermophilic archaeon Pyrococcus furiosus genome encodes three protea
203                                The anaerobic archaeon Pyrococcus furiosus grows by fermenting carbohy
204                        The hyperthermophilic archaeon Pyrococcus furiosus grows optimally at 100 degr
205                                          The archaeon Pyrococcus furiosus grows optimally at 100 degr
206                                    The model archaeon Pyrococcus furiosus grows optimally near 100 de
207 c hydrogenase (SHI) of the hyperthermophilic archaeon Pyrococcus furiosus is an NADP(H)-dependent het
208 fication of operons in the hyperthermophilic archaeon Pyrococcus furiosus represents an important ste
209                        The hyperthermophilic archaeon Pyrococcus furiosus uses carbohydrates as a car
210  essential element for the hyperthermophilic archaeon Pyrococcus furiosus, and many of its iron-conta
211 pproach that confers on a microorganism (the archaeon Pyrococcus furiosus, which grows optimally on c
212 ductase I (NfnI) from the hyperthermophillic archaeon Pyrococcus furiosus.
213 ducing conditions from the hyperthermophilic archaeon Pyrococcus furiosus.
214 form of RNA circles in the hyperthermophilic archaeon Pyrococcus furiosus.
215 sertion mutagenesis in the hyperthermophilic archaeon Pyrococcus furiosus.
216 terial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus.
217 n the ATPase domain of the hyperthermophilic archaeon Pyrococcus horikoshii is strongly regulated by
218 irst step of diphthamide biosynthesis in the archaeon Pyrococcus horikoshii uses a novel iron-sulphur
219 f a glutamate transporter homologue from the archaeon Pyrococcus horikoshii, GltPh, showed that disti
220                        The hyperthermophilic archaeon, Pyrococcus furiosus, was grown on maltose near
221  of deoxyinosine, from the hyperthermophilic archaeon, Pyrococcus furiosus.
222  it has acquired by lateral transfer from an archaeon related to the Methanomicrobiales, an important
223 nt extract of the membrane fraction from the archaeon S. solfataricus that had been enriched for this
224                            In contrast, this archaeon's RNA polymerase and core transcription factors
225 he availability of a genetic system for this archaeon should allow subsequent elucidation of the phys
226  activator and some membrane proteins of the archaeon, suggesting that the expression of these protei
227 siological context, we used ECT to image the archaeon Sulfolobus acidocaldarius and observed a distin
228 E (PLFE) isolated from the thermoacidophilic archaeon Sulfolobus acidocaldarius grown at different te
229 lus resembled those of the thermoacidophilic archaeon Sulfolobus acidocaldarius, despite important mo
230 termine the relevance of this threat for the archaeon Sulfolobus acidocaldarius, the mode of GGCC met
231             The genomic mutation rate of the archaeon Sulfolobus acidocaldarius, which inhabits a har
232 a ubiquitin-like modification pathway in the archaeon Sulfolobus acidocaldarius.
233 tification of a biogeographic pattern in the archaeon Sulfolobus challenges the current model of micr
234 ith the discovery that the hyperthermophilic archaeon Sulfolobus has three replication origins.
235  ongoing speciation in the thermoacidophilic Archaeon Sulfolobus islandicus.
236                   The hyperthermoacidophilic archaeon Sulfolobus shibatae contains group II chaperoni
237 Intriguingly, the CCA-adding enzyme from the archaeon Sulfolobus shibatae is a homodimer that forms a
238 own as rosettasomes in the hyperthermophilic archaeon Sulfolobus shibatae, are not cytoplasmic but me
239 re of citrate synthase from the thermophilic Archaeon Sulfolobus solfataricus (optimum growth tempera
240 e DNA alkyltransferase from the thermophilic archaeon Sulfolobus solfataricus (SsOGT).
241 -chromosome maintenance (MCM) complex of the archaeon Sulfolobus solfataricus (SsoMCM).
242                        The hyperthermophilic archaeon Sulfolobus solfataricus grows optimally above 8
243                   Here we establish that the archaeon Sulfolobus solfataricus harbors a hybrid segros
244  show that the Cas4 protein SSO0001 from the archaeon Sulfolobus solfataricus has metal-dependent end
245 sists of 6 homologous proteins (MCM2-7), the archaeon Sulfolobus solfataricus has only 1 MCM protein
246 The Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus is an attractive bindin
247                        The thermoacidophilic archaeon Sulfolobus solfataricus is known for its metabo
248                                          The archaeon Sulfolobus solfataricus uses a catabolite repre
249                                          The archaeon Sulfolobus solfataricus was sensitive to mercur
250 le extracts of the extreme acidothermophilic archaeon Sulfolobus solfataricus were incubated with [ga
251 s of the Orc1-1 and Orc1-3 paralogs from the archaeon Sulfolobus solfataricus, and tested their effec
252 oduct of open reading frame sso2387 from the archaeon Sulfolobus solfataricus, SsoPK2, displayed seve
253 on and structure of the CSM complex from the archaeon Sulfolobus solfataricus, using a combination of
254 lysis of the third replication origin in the archaeon Sulfolobus solfataricus, we identify and charac
255 identified two origins of replication in the archaeon Sulfolobus solfataricus, whereas a second study
256 ase subunit named PriX was identified in the archaeon Sulfolobus solfataricus.
257 the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus.
258  homomultimeric MCM of the hyperthermophilic archaeon Sulfolobus solfataricus.
259 of a DPSL protein from the thermoacidophilic archaeon Sulfolobus solfataricus.
260 a hyperthermostable enzyme isolated from the archaeon Sulfolobus solfataricus.
261 ture and regulation in the hyperthermophilic archaeon Sulfolobus solfataricus.
262 it, denoted PriX, from the hyperthermophilic archaeon Sulfolobus solfataricus.
263 m an invading virus in the hyperthermophilic archaeon Sulfolobus solfataricus.
264 ion in vitro using proteins derived from the archaeon Sulfolobus solfataricus.
265 poisomerase 3, SsTop3, from the thermophilic archaeon Sulfolobus solfataricus.
266 the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus; Sso7d-hFc was isolated
267 ties of a putative regulator ST1710 from the archaeon Sulfolobus tokodaii.
268 in chromatin structure and regulation in the archaeon Sulfolobus.
269 n polymerase (Dpo1) in the hyperthermophilic archaeon, Sulfolobus solfataricus, is shown here to poss
270             Haloferax volcanii, a halophilic archaeon, synthesizes three different proteins (alpha1,
271                                          The archaeon TBP, from the halophile/hyperthermophile organi
272 F-hw mRNA interferase from a superhalophilic archaeon that cleaves RNA at a specific seven-base seque
273  Methanococcus maripaludis is a methanogenic archaeon that contains a high amount of protein-bound Fe
274 era sedula is an extremely thermoacidophilic archaeon that grows heterotrophically on peptides and ch
275 is not the case with Pyrococcus furiosus, an archaeon that grows optimally near 100 degrees C.
276 rom Thermoproteus tenax, a hyperthermophilic archaeon that has an optimum growth temperature of 86 de
277    Methanococcus maripaludis is a mesophilic archaeon that reduces CO2 to methane with H2 or formate
278 e homolog from Haloferax volcanii, a related archaeon that synthesizes bacterioruberins but lacks ops
279 othermobacter marburgensis is a methanogenic archaeon that thrives under anaerobic conditions at 65 d
280 g sequence element from the chromosome of an archaeon, the extreme halophile Halobacterium strain NRC
281 omal protein L30e from the hyperthermophilic archaeon Thermococcus celer determined at cryo-temperatu
282 gh fidelity family-B DNA polymerase from the archaeon Thermococcus gorgonarius (Tgo-Pol), able to rep
283 racterized protein, encoded by TK1252 in the archaeon Thermococcus kodakaraensis, was shown to stably
284 NA primase complex and its subunits from the archaeon Thermococcus kodakaraensis.
285 es are incorporated by the hyperthermophilic archaeon Thermococcus kodakarensis both in vitro and in
286 ized small protein, encoded by TK0808 in the archaeon Thermococcus kodakarensis, was shown to stably
287                        The hyperthermophilic archaeon Thermococcus litoralis strain NS-C, first isola
288  molecular weight TrxR from the thermophilic archaeon Thermoplasma acidophilum ( taTrxR) that is char
289 tal structure of the N-terminal MCM from the archaeon Thermoplasma acidophilum (tapMCM).
290 ues of the alpha-subunits of the CP from the archaeon Thermoplasma acidophilum are arranged such that
291    Here, we find that Cdc48 and 20S from the archaeon Thermoplasma acidophilum interact to form a fun
292 H of the A-ATPase from the thermoacidophilic Archaeon, Thermoplasma acidophilum.
293 growth changes were analyzed in a halophilic archaeon to generate a temporal model that describes the
294 cus (Methanococcus) jannaschii was the first archaeon to have its genome sequenced, little is known a
295 ing hooks empowering this widely distributed archaeon to predominate anaerobic groundwater, where it
296 sp. strain NRC-1 blocked the ability of this archaeon to salvage Cbi.
297 enhancing effects, (i) acyclic analogs, (ii) archaeon variants and (iii) specific dyes, appear to act
298 w of the mutations arising in a thermophilic archaeon were nucleotide substitutions in contrast to in
299      During coculture of a hydrothermal vent archaeon with a bacterial competitor, muramidase transcr
300 eukaryotic cell is that it is a fusion of an archaeon with a bacterium.

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top