コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 to a pathogenic length of 78 glutamines (Q78 ataxin-3).
2 isorder caused by polyglutamine expansion in ataxin-3.
3 f ubiquitination in wild type and pathogenic ataxin-3.
4 e molecular mechanism whereby this occurs in ataxin-3.
5 K48-specific avidity in a different protein, ataxin-3.
6 o-expressed with the GR, nNOS, AR112Q or Q78 ataxin-3.
7 le is known about the cellular regulation of ataxin-3.
8 an important regulatory role for the protein ataxin-3.
9 between the ubiquitin-proteasome pathway and ataxin-3.
10 in-3 being as efficiently degraded as normal ataxin-3.
11 ransfected cells and requires intact UIMs in ataxin-3.
12 rils similar to those described for expanded ataxin-3.
13 CAG repeat in the gene encoding the protein ataxin-3.
14 yQ-containing, carboxyl-terminal fragment of ataxin-3.
15 ar inclusions containing the mutant protein, ataxin-3.
16 gregation of truncated or full-length mutant ataxin-3.
17 against the recombinant gene product, called ataxin-3.
18 rupting this interaction decreases levels of ataxin-3.
19 lyubiquitin chains by the Josephin domain of ataxin-3.
20 a lysine-less, but not N-terminally blocked, ataxin-3.
21 into an expanded polyglutamine tract within ataxin-3.
22 situ by aggregate-associated deubiquitinase ataxin-3.
23 rafish have decreased survival compared with ataxin-3-23Q and develop ataxin-3 neuropathology, ataxin
24 -3-84Q zebrafish swim shorter distances than ataxin-3-23Q zebrafish as early as 6 days old, even if e
25 ebrafish (male and female) revealed that the ataxin-3-84Q zebrafish have decreased survival compared
28 ssociated E3 ubiquitin-ligase interacts with ataxin-3, a deubiquitinating enzyme associated with Mach
30 uitination directly enhances the activity of ataxin-3, a DUb implicated in protein quality control an
32 so directly regulates the activity of a DUB, ataxin-3, a polyglutamine disease protein implicated in
34 (SCA3/MJD), we show that the disease protein ataxin-3 accumulates in ubiquitinated intranuclear inclu
36 n whereby ubiquitination at Lys-117 enhances ataxin-3 activity independent of the known ubiquitin-bin
37 disease (MJD), also known as spinocerebellar ataxin-3, affects neurons of the brain and spinal cord,
43 sed that a toxic cleavage fragment of mutant ataxin-3 alternatively spliced isoform mjd1a triggers ne
44 parkin required the catalytic cysteine 14 in ataxin-3, although the precise mechanism remained unclea
46 ologic ataxin-3 fragment, full-length mutant ataxin-3 and an unrelated GFP-polyglutamine fusion prote
48 at this reflects direct interactions between ataxin-3 and higher order ubiquitin conjugates; ataxin-3
49 AG repeats can preferentially inhibit mutant ataxin-3 and HTT protein expression in cultured cells.
50 either of two mutant polyglutamine proteins, ataxin-3 and huntingtin, support a model of disease in w
51 ophagy pathway prevents the removal of human ataxin-3 and improved movement produced by calpeptin tre
53 pathways mediated by polyglutamine-expanded ataxin-3 and that phosphorylation of this residue protec
54 ne products (huntingtin, atrophin-1 (DRPLA), ataxin-3, and androgen receptor) associated with these o
55 tates for an expanded polyglutamine protein, ataxin-3, and establish that nuclear inclusions formed b
56 substrate, the polyglutamine disease protein ataxin-3, and showed that Ube2w can ubiquitinate a lysin
57 y and aggregation properties of non-expanded ataxin-3 are determined by those of the Josephin domain,
62 also increased the levels of polyQ-expanded ataxin-3 as well as mutant alpha-synuclein and superoxid
63 protein interactions normally undertaken by ataxin-3, as both normal and mutant full-length ataxin-3
65 icate that ubiquitin-dependent activation of ataxin-3 at Lys-117 is important for its ability to redu
66 re, we report that ubiquitination of the DUB ataxin-3 at lysine residue 117, which markedly enhances
68 utamine-containing neurodegenerative protein ataxin 3 (AT3) has deubiquitylating activity and binds u
70 glutamine neurodegenerative disease protein, ataxin-3 (AT3), functions in the ubiquitin-proteasome pa
73 ation of misfolded ER proteins also involves ataxin-3 (atx3), a p97-associated deubiquitinating enzym
76 f three members of the Josephin family DUBs: ataxin 3 (ATXN3), ataxin 3-like (ATXN3L) and Josephin do
77 eads to misfolding and aggregation of mutant ataxin-3 (ATXN3) and degeneration of select brain region
78 expanded CAG repeats within an allele of the ataxin-3 (ATXN3) and huntingtin (HTT) genes, respectivel
80 is degraded by the proteasome, with expanded ataxin-3 being as efficiently degraded as normal ataxin-
81 nteraction motifs (UIMs), normal or expanded ataxin-3 binds a broad range of ubiquitinated proteins t
83 xin-3 and higher order ubiquitin conjugates; ataxin-3 binds K48-linked tetraubiquitin but not di-ubiq
84 show that the polyglutamine disease protein, ataxin-3, binds and cleaves ubiquitin chains in a manner
85 ected neural cell lines, normal and expanded ataxin-3 both co-precipitate with poly-ubiquitinated pro
86 four proteins, Parkin acted on nNOS and Q78 ataxin-3 but not on the steroid receptors, and Mdm2 did
87 on enhances ubiquitin (Ub) chain cleavage by ataxin-3, but does not alter its preference for K63-link
88 ermining solubility and aggregation rates of ataxin-3, but these properties are profoundly modulated
92 olyQ) repeat expansion in the deubiquitinase ataxin-3 causes neurodegeneration in Spinocerebellar Ata
96 bitor compound calpeptin decreased levels of ataxin-3 cleavage fragments, but also removed all human
98 ivo confirmation of the pathological role of Ataxin-3 cleavage indicates that therapies targeting Ata
99 cleavage indicates that therapies targeting Ataxin-3 cleavage might slow disease progression in SCA3
100 To gain insight into the significance of Ataxin-3 cleavage, we developed a Drosophila SL2 cell-ba
102 xin-3, as both normal and mutant full-length ataxin-3 co-immunoprecipitate with CBP and sediment on d
103 s Rad23 increases the toxicity of pathogenic ataxin-3, coincident with increased levels of the diseas
108 e N terminus of unmodified and ubiquitinated ataxin-3, demonstrating that Ube2w attaches ubiquitin to
112 d by beclin 1, was particularly inhibited in ataxin-3-depleted human cell lines and mouse primary neu
113 ld(S) VCP-binding domain with an alternative ataxin-3-derived VCP-binding sequence restores its prote
115 Upon completion of substrate ubiquitination, ataxin-3 deubiquitinates CHIP, effectively terminating t
116 in and onto ataxin-3, further explaining how ataxin-3 deubiquitination is coupled to parkin ubiquitin
117 onance binding analyses, normal and expanded ataxin-3 display similar submicromolar dissociation cons
118 he strain expressing full-length, functional ataxin-3 displayed persistent upregulation of enzymes in
119 significantly more efficient enzyme than the ataxin-3 domain despite their sharing 85% sequence ident
120 nt to increase the catalytic activity of the ataxin-3 domain to levels comparable with that of ATXN3L
121 ed in the yeast Pichia pastoris, full-length ataxin-3 enabled almost normal growth at 37 degrees C, w
122 rats stereotaxically injected with expanded ataxin-3-encoding lentiviral vectors, mutation of serine
123 erefore sought to determine the influence of ataxin-3 enzymatic activity on various cellular properti
124 ss-siRNAs are allele-selective inhibitors of ataxin-3 expression and then redesign ss-siRNAs to optim
127 uclear localization promotes aggregation: an ataxin-3 fragment containing a nonpathologic repeat of 2
128 oplasm into NI seeded either by a pathologic ataxin-3 fragment or by a second unrelated glutamine-rep
129 ration of transgenic rats expressing a human ataxin-3 fragment with an elongated polyglutamyl stretch
130 xpanded polyglutamine proteins: a pathologic ataxin-3 fragment, full-length mutant ataxin-3 and an un
135 biquitin-binding domains, which suggest that ataxin-3 functions in ubiquitin-dependent protein survei
136 the E2 is diverted away from parkin and onto ataxin-3, further explaining how ataxin-3 deubiquitinati
137 ting the autoprotective role that pathogenic ataxin-3 has against itself, which depends on the co-cha
138 parable with that of ATXN3L, suggesting that ataxin-3 has been subject to evolutionary restraints tha
142 mice with lentiviral vectors encoding mutant ataxin-3 in one hemisphere and wild-type ataxin-3 in the
144 d, suggesting that the cellular functions of ataxin-3 in protein quality control are modulated throug
145 ant ataxin-3 in one hemisphere and wild-type ataxin-3 in the other hemisphere (as internal control).
146 ), an E3 ubiquitin ligase that ubiquitinates ataxin-3 in vitro, is dispensable for its ubiquitination
148 Finally, expression of the disease protein, ataxin-3, in transfected cells increases the inactivatio
152 -terminal polyglutamine-containing domain of ataxin-3 inhibits coactivator-dependent transcription an
157 show that the polyglutamine disease protein, ataxin-3, interacts with the major histone acetyltransfe
159 ), findings that support the hypothesis that ataxin-3 is a proteasome-associated factor that mediates
160 polyglutamine (polyQ) region in the protein ataxin-3 is associated with spinocerebellar ataxia type
163 Finally, pulse-chase labeling reveals that ataxin-3 is degraded by the proteasome, with expanded at
166 nism in which the thermodynamic stability of ataxin-3 is governed by the properties of the Josephin d
167 ng and aggregation of the Josephin domain of ataxin-3 is implicated in spinocerebellar ataxia-3.
168 UIMs when the catalytic cysteine residue of ataxin-3 is mutated, suggesting that ataxin-3 ubiquitina
169 that this novel conformation of intranuclear ataxin-3 is not due to proteolysis, suggesting instead t
171 ain, and in transfected cells, indicate that ataxin-3 is predominantly a cytoplasmic protein that loc
176 or chloroquine blocked the decrease in human ataxin-3 levels and the improved movement produced by ca
177 the Josephin family DUBs: ataxin 3 (ATXN3), ataxin 3-like (ATXN3L) and Josephin domain containing 1
178 uman deubiquitinating enzymes: ataxin-3, the ataxin-3-like protein (ATXN3L), Josephin-1, and Josephin
180 activity in wild-type mice but not in orexin/ataxin-3 mice in which the Hcrt neurons degenerate postn
181 ranscripts that were decreased in transgenic ataxin-3 mice that were normalized following temsirolimu
182 NA-expressing neurons in the LHA, but orexin/ataxin-3 mice with a selective loss of the orexin neuron
186 transgenic mice contained an abundant mutant ataxin-3 mjd1a putative-cleavage fragment (Fragment), wh
187 we have developed a murine model for mutant ataxin-3 mjd1a toxicity and identified a putative-cleava
188 xpressing human mutant (Q71) or normal (Q20) ataxin-3 mjd1a under the control of the mouse prion prom
189 ing that UIM-mediated oligoubiquitination of ataxin-3 modulates ataxin-3 function rather than stabili
190 dent of the known ubiquitin-binding sites in ataxin-3, most likely through a direct conformational ch
191 5 mice with citalopram significantly reduced ataxin 3 neuronal inclusions and astrogliosis, rescued d
192 vival compared with ataxin-3-23Q and develop ataxin-3 neuropathology, ataxin-3 cleavage fragments and
193 1 and SER-4 were strong genetic modifiers of ataxin 3 neurotoxicity and necessary for therapeutic eff
194 The expression of a catalytically inactive ataxin-3 (normal or expanded) causes ubiquitinated prote
195 suggest that functional pairing of E3s with ataxin-3 or similar DUBs represents an important point o
196 narcolepsy models: Hcrt (orexin) knockouts, ataxin-3-orexin, and doxycycline-controlled-diphtheria-t
197 e specialized deubiquitinating enzyme (DUB), ataxin-3, participate in initiating, regulating, and ter
198 other modifiers of the pathogenic, expanded Ataxin-3 polyQ protein could also modify the CAG-repeat
199 eavage fragments, but also removed all human ataxin-3 protein (confirmed by ELISA) and prevented the
200 n disease tissue, both the normal and mutant ataxin-3 protein are expressed throughout the body and i
203 anio rerio) model of MJD by expressing human ataxin-3 protein containing either 23 glutamines (23Q, w
206 ated the relationship between the pathogenic ataxin-3 protein of the human disease spinocerebellar at
208 calpeptin produces complete removal of human ataxin-3 protein, due to induction of the autophagy qual
209 that induction of autophagy, and removal of ataxin-3 protein, plays an important role in the protect
215 we tested whether genetically modulating the ataxin-3-Rad23 interaction regulates its toxicity in Dro
216 nd potentially therapeutic properties of the ataxin-3-Rad23 interaction; they highlight this interact
218 sent evidence that the catalytic activity of ataxin-3 regulates its cellular turnover, ubiquitination
220 nclusion formation by the full-length mutant ataxin-3 required nuclear localization of the protein an
221 s and comigration with truncations of mutant ataxin-3 revealed that it contained residues C terminal
224 dy, we determined the domain architecture of ataxin-3, suggesting that it comprises a globular domain
226 red with ataxin-3 with only Lys-117 present, ataxin-3 that does not become ubiquitinated performs sig
227 l mechanism of transcriptional regulation by ataxin-3 that involves targeting histones, coactivators,
228 fluenced by the surrounding protein context; ataxin-3 that lacks the highly conserved, amino-terminal
230 ound in four human deubiquitinating enzymes: ataxin-3, the ataxin-3-like protein (ATXN3L), Josephin-1
232 ranuclear aggregates formed by either mutant ataxin-3, the disease protein in spinocerebellar ataxia
236 ve in this model of MJD and removal of human ataxin-3 through macro-autophagy plays an important role
237 show that the polyQ domain enables wild-type ataxin 3 to interact with beclin 1, a key initiator of a
238 action allows the deubiquitinase activity of ataxin 3 to protect beclin 1 from proteasome-mediated de
239 ression of a neurotoxic CAG expanded form of ataxin-3 to AgRP-expressing neurons in the arcuate.
241 y of a number of proteins that interact with Ataxin-3 to modulate SCA3 pathogenicity using Drosophila
242 from the normal length of 27 glutamines (Q27 ataxin-3) to a pathogenic length of 78 glutamines (Q78 a
243 e compared to wild-type mice, whereas orexin/ataxin-3 transgenic mice showed an intermediate 28% incr
244 these systems in 6 wild-type mice, 6 orexin/ataxin-3 transgenic mice, and 5 orexin ligand knockout m
245 was delivered into the brains of the orexin-ataxin-3 transgenic mouse model of human narcolepsy.
250 Here we show that, unlike most proteins, ataxin-3 turnover does not require its ubiquitination, b
251 implications for the function of parkin and ataxin-3, two proteins responsible for closely related n
252 idue of ataxin-3 is mutated, suggesting that ataxin-3 ubiquitination is itself regulated in trans by
256 inocerebellar ataxia type-3 disease protein, ataxin-3, we address two issues central to aggregation:
257 pinocerebellar ataxia type 3 disease protein ataxin-3, we demonstrate that the protein sequence surro
259 spinocerebellar ataxia type 3 (SCA3) protein ataxin-3, we isolated an upregulation allele of musclebl
260 lar protein levels of catalytically inactive ataxin-3 were much higher than those of active ataxin-3,
261 colocalize only to NI formed by full-length ataxin-3, whereas the splicing factor SC35 colocalizes o
265 stabilizes the interaction between CHIP and ataxin-3, which through its DUB activity limits the leng
266 decreases levels of cytosolic soluble mutant ataxin-3, while endogenous wild-type protein levels rema
272 f SCA3/MJD may be an altered conformation of ataxin-3 within the nucleus that exposes the polyglutami
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。