戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 orating a detailed ionic-current model of an atrial myocyte.
2 vations about the spread of Ca(2+) within an atrial myocyte.
3 nt within the three-dimensional volume of an atrial myocyte.
4 ptor clusters within a specific z disk of an atrial myocyte.
5 shown that SR Ca content is increased in old atrial myocytes.
6 monstrated TREK-1 protein in the membrane of atrial myocytes.
7 gnificantly smaller in +LMN compared to -LMN atrial myocytes.
8  alpha-adrenergic and cholinergic signals in atrial myocytes.
9 tois by specialized secretory cells, such as atrial myocytes.
10 ling of Kv1.5 in the HL-1 immortalized mouse atrial myocytes.
11  and an attenuation of I(Ca,L) in the canine atrial myocytes.
12 s can trigger arrhythmias in ventricular and atrial myocytes.
13 obal Ca2+ increase and muscle contraction in atrial myocytes.
14 tion of RyR2 clusters in rat and ventricular atrial myocytes.
15 .87 microm in ventricular and 1.69 microm in atrial myocytes.
16 icular myocytes and estimated 0.97 microm in atrial myocytes.
17 e voltage-dependent activation of I(Ca,L) in atrial myocytes.
18 (PE) on L-type Ca2+ current (I(Ca,L)) in cat atrial myocytes.
19  central release of Ca(2+) in this subset of atrial myocytes.
20 is the predominant IP3R isoform expressed in atrial myocytes.
21 e and uptake in intact and permeabilized cat atrial myocytes.
22 were not different in WT and IP3R2-deficient atrial myocytes.
23 neous Ca2+ release events in IP3R2-deficient atrial myocytes.
24  diversity of local Ca(2+) signalling in rat atrial myocytes.
25 oline (ACh) on intracellular NO (NOi) in cat atrial myocytes.
26  Ca(2+) release in subsarcolemmal domains of atrial myocytes.
27 te exposure to thyroid hormone (T(3)) on cat atrial myocytes.
28  to action potential repolarization of human atrial myocytes.
29 ve changes in the calcium handling system of atrial myocytes.
30 (2)-adrenergic receptor (AR) agonists in cat atrial myocytes.
31  with a loss of carbachol-induced current in atrial myocytes.
32 anisms of cardiac alternans in single rabbit atrial myocytes.
33 tivated, or T-type Ca(2+), channel in murine atrial myocytes.
34 lation of L-type Ca(2+) current (I(Ca,L)) in atrial myocytes.
35 icantly inhibited ICl,vol in most guinea-pig atrial myocytes.
36  patches from acutely dissociated guinea-pig atrial myocytes.
37 nt atrial pacemaker cells but not in working atrial myocytes.
38 from the IP3 R2 in the peripheral domains of atrial myocytes.
39 ar stress-sensitive current (Ishear ) in rat atrial myocytes.
40 key component of parasympathetic synapses on atrial myocytes.
41 ed in discrete bundles that appeared to abut atrial myocytes.
42 id communication and coordinate responses of atrial myocytes.
43 s a low voltage-activated calcium channel in atrial myocytes.
44 duced delayed afterdepolarizations (DADs) in atrial myocytes.
45  (ANP) is present in caveolae of in situ rat atrial myocytes.
46 d atrial myocytes and of freshly dissociated atrial myocytes.
47 rinic stimulation of native GIRK currents in atrial myocytes.
48 n ventricular myocytes were also observed in atrial myocytes.
49 dine block of IKr and IKur currents in human atrial myocytes.
50 pe-mediated Ca(2+) current in EHD3-deficient atrial myocytes.
51  also had opposing effects on ICa,L in human atrial myocytes.
52 ANP had any effect on Na(+) current in mouse atrial myocytes.
53 regulation controlling the repolarization of atrial myocytes.
54 1 expression in enzymatically isolated human atrial myocytes.
55  Ca2+ signaling in isolated rabbit and human atrial myocytes.
56 region of the SHF gives rise to both OFT and atrial myocytes.
57 ed ACs are functionally active in guinea-pig atrial myocytes.
58 K,ACh) is opposite to its effect on I(K1) in atrial myocytes.
59 ependent on CaMKII) that regulates I(CaL) in atrial myocytes.
60 (2+) release were recorded in isolated human atrial myocytes.
61 channel membrane targeting and regulation in atrial myocytes.
62 lexes among different SK channel subunits in atrial myocytes.
63  were altered consistently in ST8sia2((-/-)) atrial myocytes.
64 nd outward currents during repolarization in atrial myocytes.
65 of SK2 channels in cardiac repolarization in atrial myocytes.
66 ith the Cav3.1 channel in both HEK cells and atrial myocytes.
67 nt gap junction protein that is expressed in atrial myocytes.
68                      We conclude that in cat atrial myocytes, ACh stimulates NOi release from local s
69                       WT and IP3R2-deficient atrial myocytes also showed a significant and very simil
70                                The canonical atrial myocyte (AM) is characterized by sparse transvers
71 nized transverse tubules (T-tubules) such as atrial myocytes (AMs).
72 luciferase activity in cultured neonatal rat atrial myocytes, an effect that was increased to 8-9-fol
73                   PDE4 is expressed in human atrial myocytes and accounts for approximately 15% of to
74 KACh) deactivation kinetics in both neonatal atrial myocytes and adult sinoatrial nodal cells.
75  channels (SK, KCa 2) are expressed in human atrial myocytes and are responsible for shaping atrial a
76 ecreased L-type calcium current (I(Ca,L)) in atrial myocytes and decreased atrial contractility.
77   S107 reduced the diastolic SR Ca2+ leak in atrial myocytes and decreased burst pacing-induced AF in
78                Electrotonic coupling between atrial myocytes and Fbs may contribute to the formation
79 s the timing of parasympathetic influence on atrial myocytes and heart rate in mice.
80 eceptor when tested in cultured neonatal rat atrial myocytes and HeLa cells.
81 2+) signals ([Ca(2+)](Nuc)) in permeabilized atrial myocytes and in isolated cardiac nuclei.
82  via pertussis toxin-sensitive G proteins in atrial myocytes and in many neuronal cells.
83 of SCaEs and delayed afterdepolarizations in atrial myocytes and intact atria and prevented induction
84  potassium channel forms the IKur current in atrial myocytes and is functionally altered by coexpress
85 NP colocalize at the plasmalemma of cultured atrial myocytes and of freshly dissociated atrial myocyt
86 tes the I(Kur) repolarizing current in human atrial myocytes and regulates vascular tone in multiple
87                         We used isolated rat atrial myocytes and related changes in their subcellular
88 nside the cells; they are expressed in human atrial myocytes and responsible for shaping atrial actio
89  the gamma(6) subunit is highly expressed in atrial myocytes and that it is capable of acting as a ne
90 the density of K+ currents in left and right atrial myocytes and the density of delayed rectifier K+
91                    Ca(2+) spark frequency in atrial myocytes and the open probability of single RyR2
92  transfection of mouse C2C12 myoblasts, HL-1 atrial myocytes, and c-kit(+) cardiac progenitor cells d
93 welling-activated Cl- currents in guinea pig atrial myocytes, and Ca(2+)-activated Cl- currents in ca
94 g in high sensor expression in arterial ECs, atrial myocytes, and cardiac Purkinje fibers.
95 nt (Ik(ur)), a major repolarizing current in atrial myocytes, and regulating the resting membrane pot
96                    Ankyrin-B is expressed in atrial myocytes, and we demonstrate its requirement for
97 etected in approximately 40 % of adult mouse atrial myocytes, and when expressed, the density of this
98    These experimental designs tested whether atrial myocyte ANP-RB colocalizes at the plasmalemma and
99 mANP (10-100 nmol/L) had opposing effects on atrial myocyte AP morphology and ICa,L.
100                                              Atrial myocytes are continuously exposed to mechanical f
101 trated that the functions of SK2 channels in atrial myocytes are critically dependent on the normal e
102 e properties of Ito,f and Iss in adult mouse atrial myocytes are similar to those of the analogous cu
103                                              Atrial myocytes are subjected to shear stress during the
104 T-current density that normally results when atrial myocytes are treated with insulin-like growth fac
105 g) was studied in isolated fluo-3-loaded rat atrial myocytes at 22 and 37 degrees C using rapid confo
106 ctance is essentially abolished in SUR1(-/-) atrial myocytes but is normal in SUR1(-/-) ventricular m
107 IK,ACh in uninfected and freshly dissociated atrial myocytes but the effect was larger and more consi
108 ould be stimulated in the central regions of atrial myocytes by application of 2.5 mM caffeine.
109 ediated Ca2+ influx in isolated canine right atrial myocytes by approximately 60%, but had no signifi
110 in adult isolated canine ventricular and and atrial myocytes by using whole-cell and perforated-patch
111 etion also reduced Kv currents in male mouse atrial myocytes, by >45% (P < 0.001).
112 ted in the HL-1 cell line derived from mouse atrial myocytes, by using small interfering RNA knockdow
113 oach successfully reproduces key features of atrial myocyte Ca(2+) signaling observed using confocal
114                                 ABSTRACT: In atrial myocytes Ca(2+) release during excitation-contrac
115 ERCA function was altered to reproduce human atrial myocyte Ca2+ transients.
116                                       Ferret atrial myocytes can display an E-4031-sensitive current
117 helin-1 (ET-1) stimulation of wild-type (WT) atrial myocytes caused an increase in basal [Ca2+]i, an
118 sed the increase in K+ current of guinea pig atrial myocytes caused by 100 microM adenosine (259 +/-
119 ed in the cytoplasmic microdomain underlying atrial myocyte caveolae may be the activation of cGMP-de
120 ification and [K+]o sensitivity in the mouse atrial myocyte cell line, AT-1 cells.
121                               We established atrial myocyte cell lines expressing siRNA against desmo
122 tial distribution of Cav1.3 Ca2+ channels in atrial myocytes compared with ventricles.
123 .5 contribute to distinct K+ currents in rat atrial myocytes demonstrates that Kv1.2 and Kv1.5 also d
124                                        In HF atrial myocytes diastolic [Ca(2+)]i was increased, actio
125                         We conclude that rat atrial myocytes display a predetermined spatiotemporal p
126                     Moreover, ankyrin-B(+/-) atrial myocytes display shortened action potentials, con
127  Ca(2+) signals in indo-1- and fluo-4-loaded atrial myocytes during electrical pacing.
128 e centripetal Ca(2+) waves that occur within atrial myocytes during excitation-contraction coupling,
129  of Ca(2+) alternans in field-stimulated cat atrial myocytes employing fast two-dimensional fluoresce
130                                In intact cat atrial myocytes, endothelin (ET-1) increased basal [Ca(2
131                 In approximately 30 % of the atrial myocytes examined, 8-Br-cAMP increased macroscopi
132 te EHD3 as a key player in the regulation of atrial myocyte excitability and cardiac conduction.
133                               KEY POINTS: In atrial myocytes excitation-contraction coupling is strik
134 S6 in G protein inactivation, RGS6-deficient atrial myocytes exhibited a significant reduction in the
135 investigate whether intracaveolar ANP of rat atrial myocytes exists within caveolae bound to type B A
136 nctions as a dominant negative, and from P15 atrial myocytes exposed to (1 microM) antisense oligodeo
137 urrents were attenuated significantly in rat atrial myocytes exposed to AsODNs targeted against Kv4.2
138                                              Atrial myocytes express three different gap junction cha
139             In this study, treatment of HL-1 atrial myocytes expressing Kv1.5-GFP with the class I an
140                In cultured adult rabbit left atrial myocytes, expression of S140G-IKs shortened actio
141   As with acetylcholine-activated current in atrial myocytes, external Cs+ blocked inward but not out
142                               Immunostaining atrial myocytes for type II ryanodine receptors (RyRs) r
143                                              Atrial myocytes, for example, coexpress connexin (Cx) 40
144 ce microscopy applied to primary cultures of atrial myocytes from adult rats and to freshly dissociat
145                                Incubation of atrial myocytes from AF patients (but not controls) with
146 oltage-gated outward K+ current densities in atrial myocytes from AF patients demonstrates the need t
147            Whole-cell patch-clamp studies of atrial myocytes from Akita mice exhibited a markedly dec
148 In vitro I-1c gene transfer in isolated left atrial myocytes from both pigs and rats increased calciu
149  excitation-contraction coupling in isolated atrial myocytes from cat heart.
150 nts (I(Ca,L)) recorded from single, isolated atrial myocytes from Cav1.3(-/-) mice showed a significa
151                                              Atrial myocytes from FKBP12.6-/- mice exhibited spontane
152 spark frequency, SR Ca(2+) leak, and DADs in atrial myocytes from FKBP12.6-/-:S2814A mice compared wi
153 ion, the data support the hypothesis that in atrial myocytes from hearts with left ventricular failur
154 is showed that miR-21 was expressed in human atrial myocytes from patients in sinus rhythm and that i
155 gical K(2P)3.1 inhibition prolonged APD90 in atrial myocytes from patients with chronic AF to values
156                        I KACh, attenuated in atrial myocytes from SREBP-1 knockout mice, was stimulat
157 rominently in late cardiac repolarization in atrial myocytes from the heterozygous and homozygous nul
158 ced spontaneous diastolic Ca(2+) releases in atrial myocytes from the patients with SR that were abol
159 blotting) in tissue homogenates and isolated atrial myocytes from the right atrial appendage (RAA) of
160 n of GIRK1, SREBP-1, and I(KAch) activity in atrial myocytes from these mice to levels in wild-type m
161  isoprenaline-mediated regulation of I Ks in atrial myocytes from transgenic but not WT littermates.
162  (ICa,L), and Na(+) current were recorded in atrial myocytes from wild-type or natriuretic peptide re
163                                 Using single atrial myocytes from young and old Welsh Mountain sheep,
164                                              Atrial myocytes generally lack transverse tubules; howev
165                 The results indicate that in atrial myocytes glycolysis regulates Ca(2+) release from
166                             Isolated hypoxic atrial myocytes had 43% fewer dense surface secretory gr
167             To represent the system, a human atrial myocyte (hAM) coupled to a variable number of Fbs
168                                              Atrial myocytes have two functionally separate Ca2+ rele
169 or Ca(2+)-stimulated AC in the regulation of atrial myocyte I(CaL).
170                                           In atrial myocytes immunocytochemistry has shown two groups
171  granules and degenerative myelin figures in atrial myocytes; immunogold studies localized Rab1a to t
172                               In contrast to atrial myocytes, in mink lung epithelial cells, in which
173  of gene expression similar to that of adult atrial myocytes, including expression of alpha-cardiac m
174 regular-type action potentials of PMCA1(cko) atrial myocytes increased significantly under Ca(2+) ove
175 tion and early after-depolarization in human atrial myocytes, increasing vulnerability to stress-prov
176                        Recent experiments in atrial myocytes indicate that withdrawal of cholinergic
177        Similar results were obtained in +LMN atrial myocytes infected with Adv-FRNK.
178 ervations support the hypothesis that in rat atrial myocytes, intracaveolar ANP is bound to ANP-RB, a
179   The atrial natriuretic peptide secreted by atrial myocytes is a major adipogenic factor operating a
180 r the inwardly rectifying K+ current IK1, in atrial myocytes is affected by the expression of Kv4.2W3
181 that RyR2-mediated diastolic SR Ca2+ leak in atrial myocytes is associated with AF in CPVT mice.
182            In type 2 IP3 R (IP3 R2) knockout atrial myocytes, Ishear was 10-20% of that in wild-type
183 t of AF on human I(Ca), we compared I(Ca) in atrial myocytes isolated from 42 patients in normal sinu
184                     Voltage-clamp studies on atrial myocytes isolated from adult and postnatal day 15
185              GIRK1 appeared intracellular in atrial myocytes isolated from GIRK4 knockout mice and wa
186 nt densities are attenuated significantly in atrial myocytes isolated from P15 and adult Kv2.1N216Fla
187 tward K+ current densities in left and right atrial myocytes isolated from patients in chronic AF, re
188  was a significant diastolic SR Ca2+ leak in atrial myocytes isolated from the CPVT mouse models.
189 veal that Ito,f is selectively eliminated in atrial myocytes isolated from transgenic mice expressing
190                                    In canine atrial myocytes, isoprenaline (1 microM) consistently re
191  strikingly different from ventricle because atrial myocytes lack a transverse tubule membrane system
192                              In many species atrial myocytes lack a transverse tubule system, dividin
193                         The finding that cat atrial myocytes lack t-tubules demonstrates the function
194                                          Cat atrial myocytes lack transverse tubules and contain sarc
195 acilitating the propagation of Ca2+ waves in atrial myocytes lacking t-tubular system and provide the
196                                              Atrial myocytes, lacking t-tubules, have two functionall
197                           In embryonic chick atrial myocytes, lipid lowering by culture in lipoprotei
198 lated areas and markedly depressed in viable atrial myocytes near the ablation zones (group 1).
199               These results indicate that in atrial myocytes, NO released by selective beta(2)-AR sti
200 ndant apoJ mRNA and protein are expressed in atrial myocytes; no expression is detected in ventricula
201 om adult rats and to freshly dissociated rat atrial myocytes (not cultured).
202                                     In human atrial myocytes obtained from patients in sinus rhythm,
203 smic reticulum Ca(2+)-leak were increased in atrial myocytes of miR-106b-25(-/-) mice.
204 eported that short-term (2 h) plating of cat atrial myocytes on the extracellular matrix protein, lam
205 ormal excitation-contraction coupling in cat atrial myocytes, only Ca(2+) release from the j-SR is di
206                      We conclude that in cat atrial myocytes PE acts via alpha1-ARs coupled to PTX-in
207   Studies were performed on acutely isolated atrial myocytes plated on uncoated coverslips (LMN) or c
208 ed in part on a previous model of the rabbit atrial myocyte published by our group and was motivated
209               Moreover, loss of ankyrin-B in atrial myocytes results in decreased Ca(v)1.3 expression
210 ecordings from isolated adult (C57BL6) mouse atrial myocytes reveal the presence of two prominent Ca2
211 electron micrographs of thin sections of rat atrial myocytes revealed a fraction of dystrophin molecu
212 -SR ([Ca(2+) ]SR ; fluo-5N) Ca(2+) in rabbit atrial myocytes revealed that Ca(2+) release from j-SR r
213  Immunocytochemical analysis of cultured rat atrial myocytes revealed that T-cadherin and caveolin ha
214 y, adenoviral expression of SREBP-1 in Akita atrial myocytes reversed the impaired I(KAch) to levels
215 ctedly leads to increased outward current in atrial myocytes, shortens atrial action potentials, and
216 Therefore all G protein-coupled receptors in atrial myocytes should be able to activate IK,ACh.
217                      Electron micrographs of atrial myocytes show peripheral SR cisternae in close pr
218 tion (100 nM isoproterenol), only Casq2(-/-) atrial myocytes showed pacing-induced self-sustained rep
219 e SK channels are predominantly expressed in atrial myocytes, specific ligands of the different isofo
220                Insulin treatment of cultured atrial myocytes stimulated GIRK1 expression 2.68+/-0.12-
221 lting in electrophysiological alterations in atrial myocytes that may promote AF.
222 tion-PCR to identify partial clones from rat atrial myocytes that share high homology with a member o
223 he results demonstrate directly that, in cat atrial myocytes, the action potential-induced whole-cell
224                                  However, in atrial myocytes, the effects of shear stress are poorly
225 of the delayed rectifier K+ current in human atrial myocytes, the ultrarapid delayed rectifier K+ cur
226                                 In adult rat atrial myocytes, three kinetically distinct Ca2+-indepen
227 at beta-adrenoceptors can activate IK,ACh in atrial myocytes through the release of betagamma subunit
228 ectively, but did not alter the responses of atrial myocytes to carbachol.
229 (2+) buffers (EGTA) into voltage-clamped rat atrial myocytes to isolate the fast component of central
230 rated that TGFbeta regulates the response of atrial myocytes to parasympathetic stimulation.
231    We previously reported that attachment of atrial myocytes to the extracellular matrix protein lami
232 ol was significantly prolonged in PMCA1(cko) atrial myocytes under basal conditions, with Ca(2+) over
233 g and during Ca(2+) alternans was studied in atrial myocytes using fast confocal microscopy and measu
234 e shear stress-sensitive membrane current in atrial myocytes using the whole-cell patch clamp techniq
235  the central (CT) region of the cell) of cat atrial myocytes using whole-cell voltage-clamp together
236 l alpha1C-unassociated Ca2+-release sites of atrial myocytes, using rapid (240 Hz) two-dimensional co
237  and peripheral sites of voltage-clamped rat atrial myocytes, using rapid 2-dimensional (2-D) confoca
238  currents (Ito, IKur, Ins, and IK1) in human atrial myocytes, using the whole-cell configuration of t
239  activities of three myocyte subpopulations: atrial myocytes, ventricular myocytes, and cells of the
240  fact, for select cardiac cell types such as atrial myocytes, virtually nothing is known regarding en
241                      It is concluded that in atrial myocytes voltage-dependent Ca2+ entry triggers Ca
242 re, the average RMP of embryonic day (ED) 11 atrial myocytes was -22 +/- 2 mV.
243                  Native I(f) in nonexpressed atrial myocytes was 7+/-4 pA at -130 mV (n=5), whereas H
244          Basal activity of an AC in isolated atrial myocytes was demonstrated by the observations tha
245 bound gp91phox containing NAD(P)H oxidase in atrial myocytes was the main source of atrial superoxide
246 two-dimensional confocal Ca2+ imaging in rat atrial myocytes, we examine directly the role of I(Ca) o
247 e TATS in excitation-contraction coupling in atrial myocytes, we visualized the TATS (labelled with t
248          Mechanical properties of transgenic atrial myocytes were enhanced to the level of ventricula
249                                              Atrial myocytes were plated for at least 2 h on uncoated
250                                              Atrial myocytes were pretreated with vehicle (control) o
251 ency of spark occurrence in the periphery of atrial myocytes where the native alpha1C-RyR complexes a
252  In membrane-permeabilized (saponin-treated) atrial myocytes, where [Ca2+] can be experimentally cont
253  determining membrane potential in embryonic atrial myocytes, where I(K1) is absent.
254 excitation-contraction (E-C) coupling in cat atrial myocytes which lack transverse tubules and contai
255 action was also demonstrated in chick embryo atrial myocytes (which do not express endogenous A(3) re
256 s block the Ca(2+)-activated K(+) current in atrial myocytes, which is important for cardiac repolari
257                     The data suggest that in atrial myocytes, which lack a t-tubular system, the nj-S
258                                           In atrial myocytes, which lack t-tubules, ICa inactivation
259                              Pretreatment of atrial myocytes with 10 nM FSCPX reduced the maximal act
260 imulation of quiescent or electrically paced atrial myocytes with a membrane-permeant InsP3 ester, wh
261                         Co-immunostaining of atrial myocytes with antibodies against type II ryanodin
262                        Treatment of cultured atrial myocytes with CNTF resulted in a twofold increase
263 type Ca2+ current (beta-ICa,L) of guinea pig atrial myocytes with EC50 values of 2.17 and 0.20 microM
264                              Pretreatment of atrial myocytes with FSCPX (50 nM) markedly attenuated t
265 tes lacking t-tubular system and provide the atrial myocytes with functional Ca2+ signaling diversity
266      Treatment of isolated atria or cultured atrial myocytes with recombinant human or avian CNTF res
267              We found two populations of rat atrial myocytes with respect to the ratio of central to
268                                 Treatment of atrial myocytes with the GSK3beta inhibitor Kenpaullone
269 s activated a large outward current from rat atrial myocytes, with a parallel decrease in action pote

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top