戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 ificity for carbohydrate determinants on the bacterial surface.
2 te at and neutralize negative charges on the bacterial surface.
3 d for complement factor C3 deposition on the bacterial surface.
4 plasminogen into plasmin and binds it to the bacterial surface.
5 er membrane proteins (OMPs) expressed on the bacterial surface.
6 correlated with higher C3b deposition on the bacterial surface.
7 the presence of tubes extending out from the bacterial surface.
8 ule as prominent targets of these Abs on the bacterial surface.
9 e-binding adhesin, which is expressed on the bacterial surface.
10 ociated protein form extended fibrils on the bacterial surface.
11 he Fc-binding proteins were removed from the bacterial surface.
12 d the levels of complement deposition on the bacterial surface.
13 ave a discrete, punctate localization on the bacterial surface.
14 ccessible to EsaD-specific antibodies on the bacterial surface.
15 TonB-dependent transporters expressed at its bacterial surface.
16 croscopy confirmed their localization on the bacterial surface.
17  otherwise periplasmic tether mutants to the bacterial surface.
18 a particular lipopolysaccharide (LPS) on the bacterial surface.
19 ds most likely lie in close proximity on the bacterial surface.
20 ipid A increasing the negative charge of the bacterial surface.
21 hlighting its role in the maintenance of the bacterial surface.
22  membrane protein OmpD-specific IgG2a to the bacterial surface.
23 to the generation of an invasive proteolytic bacterial surface.
24  LT binds to lipopolysaccharide (LPS) on the bacterial surface.
25 position and activation of complement on the bacterial surface.
26 link pilin subunits and assemble pili on the bacterial surface.
27 s the presence of needles extending from the bacterial surface.
28 to thin fibrils and denser aggregates on the bacterial surface.
29 n of the Hia trimeric autotransporter on the bacterial surface.
30 ide to transport across membrane and bind to bacterial surface.
31 nt down-regulatory protein, factor H, to the bacterial surface.
32 ructure, comprising the YscF protein, on the bacterial surface.
33 ks can be achieved by engineering the native bacterial surface.
34 filaments that protrude up to 1 mum from the bacterial surface.
35 BS NeuA reduced O-acetylation of Sias on the bacterial surface.
36 tion of some of the secreted proteins on the bacterial surface.
37 ld-type levels of the SpaA-type pilus on the bacterial surface.
38 electrostatic attraction between AAF and the bacterial surface.
39 on and a hollow 'needle' protruding from the bacterial surface.
40 itiated by lipooligosaccharides (LOS) on the bacterial surface.
41 or rearrangement of and modifications to the bacterial surface.
42 in blood and on complement deposition on the bacterial surface.
43 ates delivery of the passenger domain to the bacterial surface.
44 e mechanism by which HMW1 is anchored to the bacterial surface.
45 er show that MxiH and IpaD colocalize on the bacterial surface.
46 hysiological consequences of fH bound to the bacterial surface.
47 e activity is predominantly localized to the bacterial surface.
48 sorting signal yet still associates with the bacterial surface.
49 e-like structure protruding 60 nm beyond the bacterial surface.
50 tion is dependent on P-pili expressed on the bacterial surface.
51 e presence of carbohydrate structures on the bacterial surface.
52 OMP G1a epitopes that are not exposed on the bacterial surface.
53 nd an increase in net negative charge on the bacterial surface.
54 lement and/or activate C3b deposition on the bacterial surface.
55 es are randomly oriented with respect to the bacterial surface.
56 arge serine-rich repeat protein, Hsa, to the bacterial surface.
57 ights into the interactions occurring at the bacterial surface.
58 located proteins, thus anchoring them to the bacterial surface.
59 g activation of the classical pathway on the bacterial surface.
60 involved in the acquisition of hTSP-1 to the bacterial surface.
61 regulator, complement factor H (CFH), to the bacterial surface.
62 phologically distinct pilus structure on the bacterial surface.
63 on results in lower deposition of C3b on the bacterial surface.
64 diacylglycerol and mycolate ester wax to the bacterial surface.
65  understanding nanoparticle interaction with bacterial surfaces.
66 bacter actinomycetemcomitans displays on the bacterial surface a nonfimbrial adhesin, EmaA, which is
67 ysiological and morphological changes at the bacterial surface, a phase shift with an altered array o
68  HMW1 is essential for HMW1 tethering to the bacterial surface, a prerequisite for HMW1-mediated adhe
69 at tie motor activity to mechanical cues and bacterial surface adaptation.
70 The adherence function of the protein, named bacterial surface adhesin of GBS (BsaB), depended both o
71 heir regulatory effects on the expression of bacterial surface adhesins.
72 -7, indicating the involvement of additional bacterial surface adhesive components.
73 rotein C3, C3b and iC3b, were present on the bacterial surface after incubation in human serum.
74  31-50v44w) to increase its interaction with bacterial surfaces also increased its antimicrobial acti
75 ing both on intracellular targets and on the bacterial surface, also being more efficient at interact
76 needle, made of MxiH and protruding from the bacterial surface, anchored in both bacterial membranes
77 for detection of each fusion molecule on the bacterial surface and as an indicator for complement-dep
78 age infection, VapA was observed at both the bacterial surface and at the membrane of the host-derive
79 ococcal recruitment of soluble hTSP-1 to the bacterial surface and binding of pneumococci to host cel
80 ositol (3,4)-bisphosphate [PI(3,4)P2] on the bacterial surface and by interactions between the C-term
81 ciates Akt-PH but not PLC delta-PH, from the bacterial surface and cell membranes, and results in nea
82 dorferi strain, the protein localized on the bacterial surface and conferred attachment to fibronecti
83 amino terminus (alpha-domain) of IcsA on the bacterial surface and contributes to cell-to-cell spread
84 s the expression of mosGCTLs, which coat the bacterial surface and counteract AMP activity.
85 ecreased rat and rabbit C3 deposition on the bacterial surface and decreased group C bactericidal tit
86 ion is mediated by a preformed ligand on the bacterial surface and driven entirely by host cell proce
87 mechanisms, including reduced binding to the bacterial surface and efflux pump activity.
88 of protein effectors across membranes to the bacterial surface and environment.
89 ble of blocking complement activation on the bacterial surface and equally associated with phagocytes
90 o bind effectively to the negatively charged bacterial surface and exhibit high antimicrobial activit
91 noglobulin from mice was able to bind to the bacterial surface and exhibited complement-dependent bac
92 tructure, the needle, that projects from the bacterial surface and is linked to the base by the inner
93 a surface antigen which extends out from the bacterial surface and is tightly attached to the bacteri
94 ound that HMW1 forms hair-like fibres on the bacterial surface and is usually present as pairs that a
95  Such proteins need to project away from the bacterial surface and resist significant mechanical forc
96 tein that forms fiber-like structures on the bacterial surface and shares significant sequence simila
97 nase (PGK) is both secreted and bound to the bacterial surface and simultaneously binds plasminogen a
98 genic protein that expresses epitopes on the bacterial surface and that induces potentially protectiv
99 he rate of dissociation of bonds between the bacterial surface and the actin tail, and individual var
100  of pili that are covalently attached to the bacterial surface and the elucidation of the residues li
101  the repertoire of MSCRAMMs expressed on the bacterial surface and the fluid mechanical shear rates p
102 or known or predicted to be expressed on the bacterial surface and to interact with the host during n
103          The RhsT protein was exposed on the bacterial surface and translocated into phagocytic cells
104 ussis inhibited binding of antibodies to the bacterial surface and was required for B. parapertussis
105 oteins C3 and C4, which covalently attach to bacterial surfaces and initiate opsonization and killing
106 s that Hoc could attach the phage capsids to bacterial surfaces and perhaps also to other organisms.
107 s its ability to attach to a variety of oral bacterial surfaces and to colonize subgingival dental pl
108 , an external needle that protrudes from the bacterial surface, and a tip complex that caps the needl
109 nd less factor I, generated less iC3b on the bacterial surface, and bound fewer C3 fragments.
110 ves the actin assembly protein IcsA from the bacterial surface, and consequently modulates Shigella a
111 ne, fewer FimH and fimbriae expressed on the bacterial surface, and decreased bacterial adhesion unde
112 nation, the stalk projects the head from the bacterial surface, and the anchor provides the export fu
113  showed enhanced complement C3 deposition on bacterial surfaces, and protection was dependent upon an
114 acteria by means of seven antibodies against bacterial surface antigens associated with Salmonella en
115 onducive for motility and the substratum and bacterial surface are similarly hydrophobic or hydrophil
116 ts suggest that the mechanical properties of bacterial surfaces are greatly affected by the presence
117  the helical propellers that extend from the bacterial surface, are a paradigm for how complex molecu
118  due to significant reduction of FimQ on the bacterial surface, as the aggregation was not observed i
119 cused on the binding of plasminogen (Plg) to bacterial surfaces, as it has been shown that this inter
120                                              Bacterial surface-associated proteins play crucial roles
121 ically curved DNA and contains the genes for bacterial surface-associated proteins, including a secon
122 nellae have focused primarily on its role in bacterial surface attachment and chronic infection; howe
123 tility, which when blocked decreases initial bacterial surface attachment but subsequently leads to t
124 acquire heme from hemoglobin directly at the bacterial surface, B. anthracis secretes IsdX1 to captur
125 teria to their carbohydrate receptor through bacterial surface binding lectins that significantly enh
126  infection, the alpha C protein (ACP) on the bacterial surface binds to host cell surface heparan sul
127                                          The bacterial surface-bound plasmin was more resistant to th
128 nfection, the capsule exists attached to the bacterial surface but also free in the host tissues.
129 ted colocalization of C1-INH and TagA on the bacterial surface by confocal fluorescence microscopy, w
130 at Borrelia lipoproteins are targeted to the bacterial surface by default, but can be retained in the
131 reptococcus gordonii that is exported to the bacterial surface by the accessory Sec system.
132 in assembly protein IcsA is removed from the bacterial surface by the protease IcsP.
133 des, which have a close association with the bacterial surface, CA forms a loosely associated sacchar
134  mutation of major antigenic proteins on the bacterial surface can be a signature of selection for fu
135 ed into the gut lumen, and direct binding to bacterial surfaces can be detected by immunogold analysi
136                                              Bacterial surface capsular polysaccharides (CPS) that ar
137  in the number of nanoparticles that bind to bacterial surface carbohydrates, causing lower shifts in
138  GBS to AMP did not involve an alteration in bacterial surface charge or peptidoglycan cross-linking.
139 s preference showed a linear relationship to bacterial surface charge, suggesting that microvilli res
140 h showed that surface-adherent AgNPs inhibit bacterial surface colonization, a precursor to biofilm f
141 ition, reductions in antibody binding to the bacterial surface, complement deposition, and passive pr
142 he pathogenesis of tularemia with a focus on bacterial surface components such as lipopolysaccharide
143                                 Accordingly, bacterial surface components that mediate attachment of
144 ts in other proteins have been shown to bind bacterial surface components, we hypothesized that BAI1
145 transcripts, including those associated with bacterial surface components.
146 duced the efficiency of initial adhesion and bacterial surface coverage by >85%.
147 al hyphal network) resulted in (i) increased bacterial surface coverage, (ii) effective degradation o
148 ns beyond the contamination zone even at low bacterial surface coverage.
149                   Indeed, the peptide caused bacterial surface damage and killed community-associated
150 ion which affected N-WASP recruitment to the bacterial surface, decreased the number of bacteria disp
151                                              Bacterial surface density was affected by the presence a
152  likely because resistant mutations affected bacterial surface determinants important for infectivity
153 mplex interactions between nanoparticles and bacterial surface determine the colorimetric response of
154 teins through a 'needle' protruding from the bacterial surface directly into eukaryotic cells after a
155                Here we review strategies for bacterial surface display and describe how they have bee
156  host hemostatic factor prothrombin, and the bacterial surface display of agglutinins, proteins that
157 ionally designed BH3 peptide libraries using bacterial surface display to identify selective binders
158 ive point-mutagenesis of peptide substrates, bacterial surface-display, cell sorting, and deep sequen
159 bproteome; 30 individual OMPs present on the bacterial surface during growth in human urine were iden
160 mably because F1 protein can detach from the bacterial surface easily.
161 d selected M proteins, displaced FH from the bacterial surface, enhanced alternative pathway activati
162      C8 targets capsular carbohydrate on the bacterial surface, enhancing opsonophagocytosis.
163                               Recognition of bacterial surface epitopes by host receptors plays an im
164 tein is the bgaC product of Streptococcus, a bacterial surface-exposed beta-galactosidase.
165 that the two monoclonal antibodies recognize bacterial surface-exposed epitopes of naturally folded P
166 dicate the presence of at least two distinct bacterial surface-exposed neutralization epitopes in P44
167 by c-di-GMP signaling, which stabilizes some bacterial surface-exposed proteins against proteases.
168 ule serotype independent and mediated by the bacterial surface-exposed proteins, as pretreatment of p
169 dent degradation of particular, but not all, bacterial surface-exposed proteins, including TRP120, wh
170 ted by formalin-resistant and heat-sensitive bacterial surface factors distinct from urease and Hp(2-
171        Our results show that, although these bacterial surface features influence the frequency of ad
172 ion of a select group of operons controlling bacterial surface features such as lipopolysaccharide (L
173                                              Bacterial surface fibers (pili) permit adherence to biot
174 e generation of cleaved peptidoglycan on the bacterial surface for PGRP-SC1a mediated phagocytosis.
175 hous fibrillar structures emanating from the bacterial surface forming physical bridges between bacte
176          The presence of chlorine influenced bacterial surface functional groups and further prevente
177 ites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sph
178 cellular spread, actin polymerization at the bacterial surface generates protrusions of the plasma me
179                  Several recently identified bacterial surface glycans, such as PS-I and PS-II, are p
180 similar processes are used to assemble other bacterial surface glycoconjugates.
181 production of many hexuronic acid-containing bacterial surface glycostructures.
182 e polymerization of host-cell actin near the bacterial surface, harnessing the activity of several cy
183 in displayed increased levels of ActA on the bacterial surface in protrusions.
184 in displayed increased levels of ActA on the bacterial surface in protrusions.
185 wed the identification of 79 proteins on the bacterial surface, including 14 proteins containing cell
186 C-synthesized M1-linked ubiquitin transforms bacterial surfaces into signalling platforms for antibac
187 step in the delivery of HMW1 and HMW2 to the bacterial surface involves targeting to the HMW1B and HM
188 hesis and presence of type 1 fimbriae at the bacterial surface is only partially responsible for the
189 , the principal constituent of virtually all bacterial surfaces, is a specific molecular signature re
190                                       On the bacterial surface it mediates delivery of a set of toxin
191                                              Bacterial surface layer (S-layer) proteins self-assemble
192 small sized (5-20 nm) Au nanoparticles using bacterial surface-layer proteins as a template.
193 ich is formed by the interaction between the bacterial surface lectin LecA and its cellular receptor,
194 r system that senses iron levels to regulate bacterial surface lifestyle.
195                    During invasion, the InlB bacterial surface ligands closely interact with host cel
196 ptide region (a1a2) of a specific subtype of bacterial surface M protein, present in all GAS pattern
197 or layer for the specific recognition of the bacterial surface markers lipopolysaccharide (LPS) and l
198                  Putative host receptors for bacterial surface molecules known to induce squid develo
199 Stomatal guard cells of Arabidopsis perceive bacterial surface molecules, which requires the FLS2 rec
200 twitching motility, a pilus-mediated form of bacterial surface movement, is required for Pseudomonas
201 tected more than 100 proteins exposed at the bacterial surface of M. avium subsp. hominissuis.
202 a promising vaccine candidate antigen on the bacterial surface of M. catarrhalis.
203 ant purified OppA recognized epitopes on the bacterial surface of the wild type but not the OppA knoc
204 nstrated that SBP2 expresses epitopes on the bacterial surface of the wild type but not the sbp2 muta
205 et of these proteins undergoes processing by bacterial surface omptins to be released into the supern
206 contrast, SipB and SipC were detected on the bacterial surface only subsequent to bacterial contact w
207  show that pre-existing PS-specific Igs, the bacterial surface or particulation, selective recruitmen
208 ould potentially include viral, cellular and bacterial surfaces or artificial surfaces displaying mul
209  can repress the elaboration of an oncogenic bacterial surface organelle.
210 y recognize Salmonella proteins expressed in bacterial surface organelles such as flagella and membra
211        Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activatio
212  3 encoded putative proteins associated with bacterial surface polysaccharide biosynthesis and invasi
213                                          The bacterial surface polysaccharide poly-beta-(1-6)-N-acety
214                                              Bacterial surface polysaccharides are synthesized from l
215                Understanding interactions of bacterial surface polysaccharides with receptor protein
216     These data suggest that poliovirus binds bacterial surface polysaccharides, enhancing cell attach
217 ng mechanisms, we find that poliovirus binds bacterial surface polysaccharides, which enhances virion
218 icroscopy showed that SipD is present on the bacterial surface prior to bacterial contact with host c
219 es induced the fixation of complement on the bacterial surface, promoted phagocytosis by macrophages
220 ved between the two isolates indicating that bacterial surface properties play a role in how biochar
221 at mutations in these ORFs confer changes in bacterial surface properties.
222 mined by long-lived intrinsic variability in bacterial surface properties.
223                                              Bacterial surface protein A (BspA) is a surface-expresse
224 the genetically linked high molecular weight bacterial surface protein Air.
225 s a universal sortase-catalyzed mechanism of bacterial surface protein anchoring in Gram-positive bac
226 into some human cells through binding of the bacterial surface protein InlB to the host receptor tyro
227  some mammalian cells through binding of the bacterial surface protein InlB to the host receptor tyro
228 f mammalian cells through interaction of the bacterial surface protein InlB with the cellular recepto
229 l adherence and virulence factor B (PavB), a bacterial surface protein with orthologues in other stre
230 -specific polymorphisms present in the major bacterial surface protein, outer-membrane protein A (Omp
231 This process is usually mediated by specific bacterial surface proteins and host factors coating the
232  distinct hosts, ticks and mammals, in which bacterial surface proteins are expected to have a critic
233                                              Bacterial surface proteins are important molecules in th
234                                              Bacterial surface proteins are of primary importance in
235 macrophages is dependent upon the display of bacterial surface proteins attached to the cell wall by
236                                         Many bacterial surface proteins containing an LPXTG motif are
237                                              Bacterial surface proteins covalently attach to host cel
238 ing adhesive matrix molecules (MSCRAMMs) are bacterial surface proteins mediating adherence of the mi
239 s is mediated via a range of strain-specific bacterial surface proteins that bind to a variety of pla
240 st cells by facilitating degradation of some bacterial surface proteins via endogenous serine proteas
241              H. pylori urease from a pool of bacterial surface proteins was found to coprecipitate wi
242                             The biotinylated bacterial surface proteins were isolated by streptavidin
243                             The biotinylated bacterial surface proteins were isolated by streptavidin
244  and prototype for a family of Gram-positive bacterial surface proteins, ACP facilitates GBS entry in
245                  After stochastic binding to bacterial surface proteins, HD6 undergoes ordered self-a
246 e revealed several families of Gram-positive bacterial surface proteins, including serine-rich repeat
247 riers, is mediated by the interaction of two bacterial surface proteins, InlA and InlB, with their re
248 g phenotype characterized by upregulation of bacterial surface proteins.
249 protein forms antenna-like structures on the bacterial surface required for collagen adhesion.
250 ivery with both eukaryotic microvesicles and bacterial surface secretion systems.
251 ar to the activating MBL.MASP complex on the bacterial surface so that, following recruitment of C2,
252 presence of several genetic loci that affect bacterial surface structures and for biochemical reactio
253 okaryotic post-translational modification of bacterial surface structures and the unidentified role t
254  have determined that these highly conserved bacterial surface structures are expressed by all M. cat
255 Type 1 pili are representative of a class of bacterial surface structures assembled by the conserved
256 ly biofilms the density and rupture force of bacterial surface structures can trigger cell sorting ba
257 urfactant production or by the appearance of bacterial surface structures that might power sliding mo
258 ed by bacteria or bind to negatively charged bacterial surface structures, where they can impair bind
259  may play a larger role in the decoration of bacterial surface structures.
260 on of C-terminus amidated D-amino acids onto bacterial surfaces substantially reduced the cell wall s
261 ed release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of actio
262 organelles contribute positive charge to the bacterial surface, suggesting that dispersin's role in f
263 ubpopulations of lipooligosaccharides on the bacterial surface that are determinants of biofilm forma
264   LUBAC is recruited via its subunit HOIP to bacterial surfaces that are no longer shielded by host m
265 , the specific association of ESAT6 with the bacterial surface, the binding of ESAT6 to laminin and t
266                  During its transport to the bacterial surface, the phosphate groups of the lipid A a
267 bp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient comp
268 nts to reduce the net negative charge of the bacterial surface, thereby promoting cationic antimicrob
269  and distribution of the IcsA protein on the bacterial surface through proteolytic cleavage of IcsA.
270 fection and how they are translocated to the bacterial surface through the five distinct type VII sec
271 is the needle, which is a hollow tube on the bacterial surface through which effectors are secreted,
272 al organs by potentiating C3 opsonization on bacterial surfaces, through the increase of hepatic C3 e
273 ydrate-mediated interactions directly on the bacterial surface, thus preserving the native environmen
274  mechanisms whereby SpA is released from the bacterial surface to access the host's immune system are
275  to deposit sufficient complement C3b on the bacterial surface to elicit bactericidal activity requir
276  complement regulator factor H (FH) onto the bacterial surface to evade complement-mediated cell lysi
277 /3-mediated actin filament nucleation at the bacterial surface to generate a branched network that wi
278      PspA did not have to be attached to the bacterial surface to inhibit killing, because the solubl
279 bular structures that protrude away from the bacterial surface to interact with the host cell and/or
280 sence of calcium but could be flipped to the bacterial surface upon calcium chelation.
281 erium Staphylococcus aureus by targeting the bacterial surface using 10-, 20-, and 40-nm gold particl
282 ed number of coupled adhesive bonds N on the bacterial surface varies between 10 and 40 bonds.
283   In the throat, IgG was mostly bound to the bacterial surface via Fc, whereas in the blood IgG was m
284 that staphylococci capture hemoglobin on the bacterial surface via IsdB and that inactivation of isdB
285 eins that allow host plasmin assembly on the bacterial surface, viz. a high affinity plasminogen (Pg)
286 nction to modify the antigenic nature of the bacterial surface, warranting additional investigation o
287 alization of T4SS pilus protein VirB2 on the bacterial surface was demonstrated for the first time in
288 ral groups of proteins whose presence on the bacterial surface was either constitutive or appeared to
289 rthermore, C4b deposited from serum onto AP1 bacterial surfaces was processed into C4c/C4d fragments,
290 s FHA and allows the release of FHA from the bacterial surface, were phagocytosed more efficiently th
291  virB2, are predicted to be localized at the bacterial surface, where they could potentially interact
292 ng with anionic LUVs mimicking Gram-negative bacterial surface, where this peptide adopts alpha-helic
293  is often caused by molecular changes at the bacterial surface, which alter the nature of specific dr
294       We found that HIV-1 was trapped on the bacterial surface, which led to internalization of HIV-1
295 d a reduced amount of IcsA detectable on the bacterial surface with antibody.
296 d forms large clusters of 100 A pores in the bacterial surface with Perforin-2 cleavage products pres
297 tingly, FBN9 formed dimers that bound to the bacterial surfaces with different affinities.
298  of novel methods that allow modification of bacterial surfaces with small non-biological compounds.
299 mic material, and they are released from the bacterial surface without loss of membrane integrity.
300  suggest that OspA emerges tail-first on the bacterial surface, yet independent of a specific C-termi

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top