コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 e initial step in cholesterol catabolism and bile acid synthesis.
2 specific activity but no change in rates of bile acid synthesis.
3 termining enzyme in the "classic" pathway of bile acid synthesis.
4 three negative regulatory pathways controls bile acid synthesis.
5 ed but does not seem to be rate limiting for bile acid synthesis.
6 n StAR protein coincided with an increase in bile acid synthesis.
7 effect of CYP7B1 overexpression on rates of bile acid synthesis.
8 ansport protein, led to a 5-fold increase in bile acid synthesis.
9 s both the classic and alternate pathways of bile acid synthesis.
10 te-limiting enzyme in the classic pathway of bile acid synthesis.
11 tion of cholesterol absorption and repressed bile acid synthesis.
12 safely harnessing FGF19 biology to suppress bile acid synthesis.
13 yme can participate in all known pathways of bile acid synthesis.
14 rohepatic circulation rather than in de novo bile acid synthesis.
15 hepatic cholestasis associated with impaired bile acid synthesis.
16 oxylase (Cyp7a), the rate-limiting enzyme in bile acid synthesis.
17 5beta-reductase is a key enzyme involved in bile acid synthesis.
18 hways including FGF19-mediated repression of bile acid synthesis.
19 ase enzyme, active in the acidic pathway for bile acid synthesis.
20 oxylase CYP7A1 and other enzymes involved in bile acid synthesis.
21 in cholesterol levels through inhibition of bile acid synthesis.
22 decrease in expression of genes involved in bile acid synthesis.
23 f hepatic CYP7A1, thus promoting the de novo bile acid synthesis.
24 ne, including Fgf15, a negative regulator of bile acid synthesis.
25 ot play a role in postprandial regulation of bile acid synthesis.
26 and facilitate FGF19-mediated repression of bile acid synthesis.
27 ctors that induce CYP7A1 gene expression and bile acid synthesis.
28 udy, we investigated the nutrient effects on bile acid synthesis.
29 n of PGC-1alpha in hepatoma cells stimulates bile acid synthesis.
30 investigate the role of TGFbeta1 in hepatic bile acid synthesis.
31 A1 that encodes the rate-limiting enzyme for bile acid synthesis.
32 n 7alpha-hydroxylase expression and hence in bile acid synthesis.
33 n the p38 signaling pathway, HNF-4alpha, and bile acid synthesis.
34 reases in diabetes, whereas insulin inhibits bile acid synthesis.
35 sterol mobilization, cholesterol efflux, and bile acid synthesis.
37 l 7-hydroxylase is a rate-limiting enzyme in bile acid synthesis, a major pathway for cholesterol cat
38 nt adaptive response; there was no change in bile acid synthesis, ABCG5/G8 expression, or hepatic cho
39 circulation of bile acids leads to increased bile acid synthesis and a reduction in plasma LDL-choles
42 reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consump
43 ore, Pon3KO mice exhibited decreased hepatic bile acid synthesis and decreased bile acid levels in th
45 gene and suggests a discordant regulation of bile acid synthesis and gluconeogenesis by glucagon in h
46 hat may play a key role in the regulation of bile acid synthesis and gluconeogenesis in the liver.
48 pite compensatory changes in cholesterol and bile acid synthesis and in the expression of adenosine t
49 use livers suggesting enhanced repression of bile acid synthesis and increased efflux of bile acids i
51 dual FXR and TGR5 agonist INT-767 on hepatic bile acid synthesis and intestinal secretion of glucagon
53 t transactivator of the human CYP7A1 gene in bile acid synthesis and phosphoenolpyruvate carboxykinas
54 e clearly established a relationship between bile acid synthesis and plasma LDL-cholesterol concentra
55 ydroxylase activity is increased 5-fold, but bile acid synthesis and pool size are 47 and 27%, respec
57 ver FGF19/FGFR4 signaling pathway to inhibit bile acid synthesis and prevent accumulation of toxic bi
58 The JNK/c-Jun signaling pathway inhibits bile acid synthesis and protects hepatocytes against the
59 holate as an important negative regulator of bile acid synthesis and provide preliminary evidence for
61 e studies confirm the importance of CYP27 in bile acid synthesis and they reveal an unexpected functi
62 decrease in mRNAs encoding genes controlling bile acid synthesis and transport as well as a variety o
63 eostasis by regulating genes responsible for bile acid synthesis and transport in humans, including c
65 and hepatic bile acid profiles, and hepatic bile acid synthesis and transportation gene expression w
66 as genes involved in fatty acid trafficking, bile acid synthesis and uptake, and inflammatory respons
68 ulating the expression of genes critical for bile-acid synthesis and hydrophobicity in the liver.
69 it with fasting serum 7alphaC4 (surrogate of bile acid synthesis) and FGF19 (negative regulator of bi
70 xylase, which is the rate-limiting enzyme in bile acid synthesis, and activated the gene encoding int
71 olic pathways: steroid hormone biosynthesis, bile acid synthesis, and conversion of lanosterol to cho
72 humans and define a further inborn error in bile acid synthesis as a metabolic cause of severe chole
74 no significant effect on the rates of total bile acid synthesis but significantly increased (4.1-fol
76 rol 27-hydroxylase (CYP27A1) is required for bile acid synthesis by both the classical and alternate
77 ids activate FXR, which in turn switches off bile acid synthesis by reducing the mRNA levels of bile
78 ow that the dietary vitamins A and D inhibit bile acid synthesis by repressing hepatic expression of
79 , Nr1h4) is a major mechanism in suppressing bile-acid synthesis by reducing the expression levels of
80 lternative pathway becomes a main pathway of bile acid synthesis capable of generating cholic and che
82 xhibited elevated cholesterol metabolism and bile acid synthesis coincident with unrepressed levels o
85 tic free cholesterol accumulation, increased bile acid synthesis, decreased biliary cholesterol secre
88 A1) catalyses sterol side-chain oxidation of bile acid synthesis from cholesterol, and the first reac
91 cid synthesis by reducing the mRNA levels of bile acid synthesis genes, including cholesterol 7alpha-
92 alpha) regulates genes involved in lipid and bile acid synthesis, gluconeogenesis, amino acid metabol
93 the down-regulation of key genes involved in bile acid synthesis, gluconeogenesis, and fatty acid bet
95 owth factor receptor 4 (FGFR4) in regulating bile acid synthesis has been well defined; however, its
96 -limiting enzyme in the classical pathway of bile acid synthesis, has been implicated in plasma chole
98 ocyte transport proteins and cholesterol and bile acid synthesis illustrated the development of chole
99 ur aim was to fully characterize a defect in bile acid synthesis in a 2-week-old African-American gir
100 sis genes resulted in a 3-fold lower rate of bile acid synthesis in a rat bile fistula animal model.
101 ylase and sterol 27-hydroxylase that control bile acid synthesis in classic and alternative pathways
102 ility of the hepatocyte to adapt its rate of bile acid synthesis in concert with the amount of choles
103 chanism underlying FGF15/FGF19 inhibition of bile acid synthesis in hepatocytes remains unclear.
104 inhibited the mRNA expression of CYP7A1 and bile acid synthesis in HepG2 cells and primary human hep
106 that HGF is a novel regulator of CYP7A1 and bile acid synthesis in human hepatocytes and may protect
109 olesterol transport from peripheral tissues, bile acid synthesis in liver, and cholesterol absorption
110 cholesterol efflux in macrophages, promotes bile acid synthesis in liver, and inhibits intestinal ch
112 d specific transcriptional down-regulator of bile acid synthesis in primary rat hepatocytes, through
115 paired in NCoA6(L2m/L2m) mice, which reduced bile acid synthesis in the liver and excretion in the fe
120 F-4 transactivation of CYP7A1, a key gene in bile acid synthesis, in HepG2 cells, and mutation of the
121 -limiting enzyme in the alternate pathway of bile acid synthesis, in the liver of Syrian hamsters.
124 w that 7alpha-hydroxylase and the pathway of bile acid synthesis initiated by this enzyme are essenti
127 In older animals, an alternate pathway of bile acid synthesis involving an inducible oxysterol 7al
128 To understand if HIF-mediated decrease in bile acid synthesis is a physiologically relevant pathwa
134 enzyme catalyzing the rate-limiting step of bile acid synthesis, is more sensitive to bile acid supp
135 termining enzyme in the alternate pathway of bile acid synthesis, is upregulated threefold in the PEX
137 variation in negative feedback inhibition of bile acid synthesis may affect CDC-mediated acceleration
138 se, alternative mechanisms for regulation of bile acid synthesis may exist in human and hamster liver
142 diated regulation of transcripts involved in bile acid synthesis or sterol efflux appear insensitive
143 duced expression of the genes in the classic bile acid synthesis pathway but induced those in the alt
145 lpha-hydroxylase, an enzyme of the alternate bile acid synthesis pathway with a sexually dimorphic ex
150 tter feature ensures that the early phase of bile acid synthesis (pre-cholesterol) is in metabolic co
151 ated expression levels in B6By liver for key bile acid synthesis proteins, including cholesterol 7alp
154 aling defects, resulting in normalization of bile acid synthesis, the bile acid pool, and liver size.
155 egulating hepatic cholesterol catabolism and bile acid synthesis through the transcriptional control
156 -33a may be a potential strategy to increase bile acid synthesis to maintain lipid homeostasis and pr
157 wn-regulated the CYP7A1 and CYP8B1, shifting bile acid synthesis toward the acidic pathway to increas
159 The bile acid-FXR interaction regulates bile acid synthesis, transport, and cholesterol metaboli
161 ex in the SHP-mediated inhibition of hepatic bile acid synthesis via coordinated chromatin modificati
166 7alpha-hydroxylase, the limiting enzyme for bile acid synthesis, was elevated, unresponsive to dieta
167 e major enzyme of the alternative pathway of bile acid synthesis, was not significantly different in
168 etic polymorphisms involved in regulation of bile acid synthesis were analyzed in the 36 patients wit
170 Similar changes in C7 alpha H, S27H, and bile acid synthesis were observed in primary rat hepatoc
171 , and that there are alternative pathways of bile acid synthesis which begin with 27-hydroxylation of
172 ulated sterol 27-hydroxylase and alternative bile acid synthesis, which expanded the bile acid pool a
173 tion of hepatic LXR and Cyp7a1 led to higher bile acid synthesis, which may have contributed to incre
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。