コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 the caterpillar, namely the tegument and the bristle.
2 lusters of cells at the sites of each future bristle.
3 ses N phenotypes in the adult mechanosensory bristle.
4 ptors in hair cells as well as in Drosophila bristles.
5 veins, increased bristle density, and tufted bristles.
6 of achaete allows formation of the remaining bristles.
7 described; it causes a loss of some sensory bristles.
8 te expression that results in the additional bristles.
9 variation in the number of ventral abdominal bristles.
10 ocation of the longitudinal actin bundles in bristles.
11 filaments are prominent features of growing bristles.
12 ty to induce the formation of mechanosensory bristles.
13 gth of the scutum, through secondary loss of bristles.
14 of the rows of acrostichal and dorsocentral bristles.
15 rotation is blocked by a neighboring row of bristles.
16 ouching ground with all or nearly all of the bristles.
17 gans such as the macrochaetae, large sensory bristles.
18 t, fat, and occasionally malformed hairs and bristles.
19 tial for Dyl plasma membrane localization in bristles.
20 for male-specific morphogenesis of sex comb bristles.
21 for the morphogenesis of both denticles and bristles.
22 yl is also required for cuticle formation in bristles.
23 morphological structure composed of modified bristles.
24 velopment, poor fertility, and short slender bristles.
25 of a pupal-like abdomen with few or no short bristles.
26 repattern that allows precise positioning of bristles.
27 hereas its overexpression results in loss of bristles.
28 also rescuing dPsn-induced malformations in bristles.
29 ized cuticular structures, such as hairs and bristles.
32 s involved in mechanotransduction by tactile bristles also eliminate or reduce the Johnston's organ r
34 g adult development of Drosophila suppressed bristle and hair formation when induced early or redirec
35 markers in 20E-free cultures showed that the bristle and joint cells had not undergone any further mo
37 log Rheb each resulted in duplication of the bristle and socket cells, progeny of the pIIa cell, and
38 that profilin promotes actin assembly in the bristle and that a balance between capping protein and p
40 mation of branched arista laterals, branched bristles and a strong multiple hair cell phenotype that
41 ignaling controls the orientation of sensory bristles and cellular hairs (trichomes) along the antero
43 to be the main contributor while both nylon bristles and elastomers could act as absorptive sinks fo
44 ore, that Ed is required to suppress sensory bristles and for proper wing vein specification during a
45 croscopy shows that escapers have defects in bristles and hairs, indicating that this motor protein p
46 present around the periphery of other insect bristles and hairs, longitudinal ridges in lepidopteran
48 ve opposite effects on the number of sensory bristles and on wing venation phenotypes induced by modi
49 and nonvolatile pheromones through gustatory bristles and pegs distributed on multiple body parts inc
50 esults in an increased production of sensory bristles and sensory organ precursor (SOP) cells on the
51 entation and the number of ventral abdominal bristles and sex comb teeth) in a natural population of
52 oduce epidermal hairs, the shafts of sensory bristles and the lateral extensions of the arista are at
53 for TAF250 during ovary, eye, ocelli, wing, bristle, and terminalia development as well as overall g
56 tion of chitin, a major cuticle component in bristles, and disrupting Rab11 function leads to phenoty
57 s governing the parallel alignment of hairs, bristles, and ommatidia in Drosophila have all served as
58 r than 400 ng 20 E/ml) than pretarsal claws, bristles, and other joints (greater than 40 ng 20E/ml).
59 uction of mechanoreceptor currents by insect bristles, and seems likely to represent a new kind of me
61 er adult leg, the six distalmost joints, the bristles, and the pretarsal claws, were examined to inve
62 nchung-expressing neuron under each recurved bristle are essential for its mechanosensitivity and the
66 Su(Raf) Hsp83 mutants can extend to thoracic bristles as well as previously reported effects on viabi
70 rneal epithelium was removed with a rotating bristle brush and stromal thickness monitored for 1 hour
71 ved in lateral inhibition of interommatidial bristles but is not required for induction of the cone c
76 thway inhibitor, and H heterozygotes exhibit bristle cell fate phenotypes reflecting gain-of-Notch si
77 effector for mediating the attachment of the bristle cell membrane to chitin to establish a stable cu
80 on, loss of lilli in adult photoreceptor and bristle cells results in a significant decrease in cell
87 We have identified an essential role for the bristle cuticle in the maintenance of bristle structure
89 that give rise to Drosophila mechanosensory bristles, Delta (Dl) ligand in the sensory organ precurs
91 tly evolved, male-specific array of modified bristles derived from transverse bristle rows found on t
93 bchs function restores viability and normal bristle development in animals with reduced rab11 functi
94 lates the assembly of actin filaments during bristle development in Drosophila and filopodia formatio
97 QTL mapped to the same location as candidate bristle development loci, several QTL regions did not en
99 sophila melanogaster wing vein and scutellar bristle development to screen Rab proteins predicted to
102 Here, we describe a new gene involved in bristle development, identified through the use of natur
108 ty and patterning defects in eye and sensory bristles due to cis-regulatory lesions in the cell cycle
111 The actin bundles essential for Drosophila bristle elongation are hundreds of microns long and comp
112 ng bristle rudiment to provide direction for bristle elongation, a process thought to be orchestrated
113 actin bundle structure and found that during bristle elongation, snarls of uncross-linked actin filam
115 en its function is reduced in the Drosophila bristle, F-actin levels increase and the actin cytoskele
116 e genes (amos and ato) must suppress sensory bristle fate as well as promote alternative sense organ
119 al gene expression (and thus interommatidial bristle formation) and positions the morphogenetic furro
120 ughterless to promote furrow progression and bristle formation, respectively, can block ectopic wingl
121 compartment boundaries - in consequence, the bristles from each segment send their nerves to the CNS
122 nal, conductive brushes with carbon nanotube bristles grafted on fibre handles, and demonstrate their
126 ting-rotating powered toothbrush with a soft-bristle head resulted in higher GM stability after root
127 ormones brassinosteroids (BRs) in specifying bristle identity and maintaining spikelet meristem deter
128 -of-function bsl1 mutants fail to initiate a bristle identity program, resulting in homeotic conversi
129 unction is the appearance of ectopic sensory bristles in addition to loss of olfactory sensilla, owin
131 iated with an increase of 0.35 sternopleural bristles in laboratory strains in two large samples of w
135 Typical materials for constructing brush bristles include animal hairs, synthetic polymer fibres
138 The morphogenesis of Drosophila sensory bristles is dependent on the function of their actin and
139 In the leg, a group of small mechanosensory bristles is organized into a series of longitudinal rows
149 >90% power to detect effects as low as 0.27 bristles (<1% of the total variation in bristle number)
150 length ~200 microm) are homologous to insect bristles (macrochaetes), and their colors create the pat
151 llectively formed brush-like structures with bristles made of bundles of 2-27 nups, however, the bund
153 rican Dental Association (ADA)-accepted soft-bristle manual brush in a non-flossing gingivitis popula
154 1 ion channel has a role in both hearing and bristle mechanosensation in fruit flies and in proprioce
155 affected by two mutations that do not affect bristle mechanotransduction, beethoven (btv) and touch-i
156 primordia of a group of small mechanosensory bristles (microchaetae), which on the legs of the Drosop
157 rthermore, overexpression of profilin in the bristle mimics many features of the cpb loss-of-function
158 able data set for future studies on hair and bristle morphogenesis, cuticle synthesis, and planar pol
161 ression of bristle development or changes in bristle morphology in response to endogenous and ectopic
162 xhibit three developmental defects, abnormal bristle morphology, decreased meiotic recombination, and
163 result in female sterility, aberrant sensory bristle morphology, loss or degeneration of tissues, and
166 led make the epidermal cells inhospitable to bristle neurons; sensory axons that are too near these c
167 for high or low, sternopleural or abdominal bristle number and an isogenic wild-type chromosome.
168 visible in the adult fly: increased sensory bristle number and the formation of a rough eye produced
169 cted genotype/phenotype associations between bristle number and variants in the introns of Delta cann
170 ncing selection or assume variants affecting bristle number are neutral, than mutation-selection equi
172 uantitative effects of P elements on sensory bristle number can identify genes affecting neural devel
174 cting Drosophila abdominal and sternopleural bristle number have occurred in 11 replicate lines durin
175 variation in sternopleural and/or abdominal bristle number in Drosophila melanogaster, for both a la
177 ait loci (QTL) for Drosophila mechanosensory bristle number in six recombinant isogenic line (RIL) ma
178 n polymorphisms associated with variation in bristle number is more parsimoniously explained by model
179 e independently associated with variation in bristle number measured in two genetic backgrounds as as
180 ween spontaneous mutations and QTL affecting bristle number on the deficiency-bearing chromosomes, wh
181 e complex (ASC) polymorphisms and Drosophila bristle number phenotypes in several new population samp
184 ar sc alpha is associated with sternopleural bristle number variation in both sexes and a 3.4-kb inse
185 ly shown to be associated with sternopleural bristle number variation in both sexes in a set of isoge
190 0.27 bristles (<1% of the total variation in bristle number) we did not replicate the association in
191 detected, of which 33 affected sternopleural bristle number, 31 affected abdominal bristle number, an
193 as little as 2% of segregating variation for bristle number, and saturating the region with single-nu
194 hromosome genetic variation in sternopleural bristle number, and the 3.4 kb insertion accounts for 22
195 ments as a class contributes to variation in bristle number, apparently in a sex- or trait-limited fa
196 eduction in both sternopleural and abdominal bristle number, supporting deleterious mutation-selectio
197 he proneural cluster increases adult sensory bristle number, whereas its overexpression results in lo
198 s influenced the normally invariant thoracic bristle number, while none affected invariant scutellar
203 body weight, and abdominal and sternopleural bristle numbers) were measured in outbred heterozygous F
204 uronal cells associated with diverse sensory bristles of both the chemo- and mechanosensory systems.
205 rmation of a majority of the interommatidial bristles of the eye and cause defects in other external
206 ng terminal organ and in adults on the taste bristles of the labelum, the legs, and the wing margins.
208 Ubx blocks the development of two particular bristles on T3 at different points in sensory organ deve
213 phila the stereotyped arrangement of sensory bristles on the notum is determined by the tightly regul
215 ra vicina displays a pattern of four rows of bristles on the scutum resembling the postulated ancestr
216 omote the development and migration of other bristles on the third femur and to repress trichomes.
218 The stereotyped, two-dimensional pattern of bristles on the thorax of Drosophila has been intensivel
220 xifen (a JHM) had little effect on abdominal bristle or cuticle formation, but disrupted the developm
224 a variety of functional elements controlling bristle patterning and on the basis of prior work is a s
225 enotype strongly resembles the wing-hair and bristle patterning defects observed in Drosophila frizzl
226 uggest that interactions between Ubx and the bristle patterning hierarchy have evolved independently
228 t, similar to its known function in thoracic bristle patterning, Ush functions in the control of hear
233 ply innovative analysis to an old problem of bristle patterns in Drosophila, reducing the nonlinear i
234 x) controls specific differences between the bristle patterns of the second and third thoracic segmen
235 joints connecting the legs to the thorax, in bristle patterns, and in the positioning of some sensory
239 t artificial selection changes the number of bristles per comb without a proportional change in the s
240 chickadee mutations suppress the abnormal bristle phenotype and associated abnormalities of the ac
244 op through either sex-specific patterning of bristle precursor cells or male-specific morphogenesis o
245 by transcriptional activation at sites where bristle precursors develop and by repression outside of
247 and skin mechanoreceptors in vertebrates, to bristle receptors in flies and touch receptors in worms,
248 ated that the mechanosensitivity of recurved bristles requires Nanchung and Nanchung-expressing neuro
250 pression are sufficient to repress an eighth bristle row on the posterior second and third femurs, wh
251 of modified bristles derived from transverse bristle rows found on the first thoracic legs in both se
252 combs originate as one or several transverse bristle rows that subsequently rotate 90 degrees and ali
254 the socket cell overlies the newly emerging bristle rudiment to provide direction for bristle elonga
256 s phenotypically resemble mutations in small bristles (sbr), the Drosophila homolog of the human mRNA
257 By using a conditional mutation in small bristles (sbr), which encodes an mRNA nuclear export fac
258 e adult cuticular surface, the shafts of the bristle sense organs, the lateral extensions of the aris
262 icle deposition by highly elongated Khc null bristle shafts suggests that conventional kinesin is cri
264 fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mech
265 electron microscopic analysis of individual bristles showed that curvature is planar and far greater
266 Examination of bundle disassembly in mutant bristles shows that plasma membrane association and cros
267 of Delta-Notch signaling cannot account for bristle spacing or the gradual refinement of this patter
268 system development, as well as adult sensory bristle specification and shows that Ed interacts synerg
269 nch number and density, spikelet number, and bristle (sterile branchlet) number; these differences al
270 or the bristle cuticle in the maintenance of bristle structure and shape at late stages of bristle de
271 ment also induces the splitting of hairs and bristles, suggesting that the actin cytoskeleton might b
273 nchung-expressing neuron under each recurved bristle that forms an array along the wing margin as bei
275 phila adult abdomen bears oriented hairs and bristles that indicate the planar polarity of the epider
276 cells survive loss of borr and develop giant bristles that may reflect their high degree of ploidy.
277 t of the cuticle is decorated with hairs and bristles that point posteriorly, indicating the planar p
278 microscopy analysis of mutant and wild-type bristles that the amount of material that connects the a
279 yed during the development of all Drosophila bristles, they play fundamentally different roles in dif
283 that >2% of the genome could affect just one bristle trait and that there must be extensive pleiotrop
284 ions lead to more severe effects on variable bristle trait means than do single Hsp83 mutations.
285 mplementary effects on thoracic and variable bristle trait numbers, depending on the allelic combinat
286 the phenotypic or environmental variance of bristle traits and that complementation of E(sev) and Su
288 ev) alleles consistently influenced variable bristle traits while there were fewer effects of the Su(
291 es demonstrate that in developing Drosophila bristles, two cross-linking proteins are required sequen
294 we studied the sex comb, a group of modified bristles used in courtship that shows marked morphologic
295 involves only the modification of individual bristles, while other species have more complex "rotated
296 s adults, sbr flies have smaller and thinner bristles with a reduced diameter, suggesting a defective
297 men of adult Drosophila bears mechanosensory bristles with axons that connect directly to the CNS, ea
298 chnin A (1) is an antifungal polyketide that bristles with ethyl groups mounted onto a caged heterotr
299 es can be stabilized by culturing elongating bristles with jasplakinolide, a membrane-permeant inhibi
300 reproduce in an all-or-nothing mode, such as bristle worms: females committed to reproduction spend r
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。