コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 er a meal and shows potential for decreasing caloric intake.
2 ession, with adjustment for age, gender, and caloric intake.
3 equired for the ability to maintain constant caloric intake.
4 equire parenteral nutrition (PN) to optimize caloric intake.
5 energy homeostasis, especially after excess caloric intake.
6 es in survival and fitness through increased caloric intake.
7 ased leptin expression, resulting in greater caloric intake.
8 ncy questionnaires and standardized to total caloric intake.
9 dergo rapid expansion during times of excess caloric intake.
10 tube dislodgment and may result in improved caloric intake.
11 hat these differences were due to changes in caloric intake.
12 and gut peptides that influence appetite and caloric intake.
13 gth z scores were negatively correlated with caloric intake.
14 n equations to describe the cumulative daily caloric intake.
15 adipose tissue mass during states of excess caloric intake.
16 f age, admission and weight-restored BMI, or caloric intake.
17 ioma risk, with adjustment for age and total caloric intake.
18 ic rats, but modified neither chow nor total caloric intake.
19 the health benefits of DER without reducing caloric intake.
20 eppers, is able to induce satiety and reduce caloric intake.
21 eight by decreasing appetite and spontaneous caloric intake.
22 , wound healing, chemopreventive agents, and caloric intake.
23 hanges explain these diet-induced changes in caloric intake.
24 injury in these mice that are independent of caloric intake.
25 s index, physical activity, time period, and caloric intake.
26 omeostasis in the face of wide variations in caloric intake.
27 body weight, extent of burn area, and daily caloric intake.
28 to loss of body fat in the context of normal caloric intake.
29 diets, comprising as much as 25% of average caloric intake.
30 tissue, and that expression is regulated by caloric intake.
31 s subjected to 6 years of a 30% reduction in caloric intake.
32 lation of LHA glutamatergic neurons enhances caloric intake.
33 eted their fat stores, despite having higher caloric intake.
34 in the first 6 days, and not used to augment caloric intake.
35 s of lactoferrin being partly independent of caloric intake.
36 etofore assumed, simply triggered by reduced caloric intake.
37 IL-13; this co-expression is enhanced after caloric intake.
38 s in skeletal muscle quality correlated with caloric intake.
39 es fat accumulation independent of excessive caloric intake.
40 size cap on SSBs and the potential effect on caloric intake.
41 and cholesterol levels without a decrease in caloric intake.
42 fluenced neither cancer nor longevity at two caloric intakes.
43 0%, 95% CI, -12% to +12%; P = .30), or total caloric intake (+117 kcal; 95% CI, -243 to +479; relativ
44 -19.8%, p = 0.49) and in mean per capita SSB caloric intake (-13.3%, p = 0.56) from baseline to post-
45 e rates aimed at maintaining constant hourly caloric intake; 2) rates of responding markedly increase
46 ceived total parenteral nutrition (TPN) with caloric intake 20% to 30% above their resting energy exp
47 p, individuals had lower protein (30.1%) and caloric intake (30.2%) (P = 0.01 and 0.02, respectively)
48 the HF diet exhibited significantly reduced caloric intake (-40%), NPY expression in the arcuate nuc
49 per day orally, providing 33% of total daily caloric intake); 6 received alcohol and irbesartan (5 mg
52 urnal awakenings and ingestions, total daily caloric intake after the evening meal, CGI severity rati
57 esult from the interaction of modern dietary caloric intake and ancient mitochondrial genetic polymor
59 tones in postmenopausal women independent of caloric intake and BMI, primarily because of the amount
60 In the whole cohort, after adjustment for caloric intake and cardiovascular disease risk factors,
62 is affects host fitness owing to the loss of caloric intake and colonization resistance (protection f
63 ioral and physiological situations including caloric intake and digestion, breast feeding, poison-avo
64 h reduced volume results in comparable total caloric intake and diminishes the risk of prolonged diar
65 nges of: (1) a significant increase in total caloric intake and dissected fat pad weights; (2) a rise
67 -type mice, the lean AAV mice have increased caloric intake and do not develop age-related obesity or
68 rt term HFD feeding led to a 37% increase in caloric intake and elevated base-line free FAs and insul
70 matory pathways results in the uncoupling of caloric intake and energy expenditure, fostering overeat
73 cues, and that maintaining a balance between caloric intake and expenditure may reduce striatal, insu
74 lso imply that maintaining a balance between caloric intake and expenditure over time may reduce stri
75 Long term administration of leptin decreases caloric intake and fat mass and improves glucose toleran
76 iposity, the effect of FGF21 on body weight, caloric intake and fat oxidation were significantly atte
77 ated their metabolic syndrome with increased caloric intake and feed efficiency, reduced oxygen consu
80 e onset of weight gain in response to excess caloric intake and hyperinsulinemia; however, the mechan
81 e energy expenditure, GLP-1 action to reduce caloric intake and improve glucose control, and GIP acti
83 and pharmacologic interventions that reduce caloric intake and increase fatty acid oxidation, it see
84 ts was principally associated with decreased caloric intake and increased diet duration but not with
85 that promoted weight loss through decreased caloric intake and increased physical activity (interven
91 ethods resulted in fat-induced inhibition of caloric intake and normalization of hypothalamic neurope
92 and considers the hypothesis that excessive caloric intake and obesity may be produced by dietary an
93 t studies exploring the relationship between caloric intake and outcomes in obese patients with under
95 evels were then compared across quintiles of caloric intake and physical activity in linear regressio
99 of LHA glutamatergic neurons increased daily caloric intake and produced weight gain in mice that had
100 hotosynthesis constitute much of human daily caloric intake and provide the basis for high-energy bio
101 sity and diabetes are associated with excess caloric intake and reduced energy expenditure resulting
103 dietary switch changed the pattern of daily caloric intake and suppressed HFD-induced adipose macrop
108 (500-kcal/d deficit from weight-maintaining caloric intake) and then randomly assigned to pioglitazo
109 ions include muscle wasting, anemia, reduced caloric intake, and altered immune function, which contr
112 on cycle, provides a percentage of our daily caloric intake, and is a major driver in the renewable c
114 genotype, family history of type 1 diabetes, caloric intake, and omega-6 fatty acid intake, omega-3 f
116 hat a restricted HFD intake regimen inhibits caloric intake as a consequence of FA-induced VMH ketone
117 itum, Hcrt-UCP2 transgenic mice had the same caloric intake as their wild-type littermates but had in
119 d nonobese subjects underwent measurement of caloric intake at maximum satiation; postprandial sympto
123 icity, education, apolipoprotein E genotype, caloric intake, body mass index, smoking status, depress
125 Adipose tissue expands in response to excess caloric intake, but individuals prone to deposit viscera
126 ability of fat mass to expand with increased caloric intake, but that SMRT also negatively regulates
127 ne week of daily anodal tDCS reduced overall caloric intake by 14% in comparison with sham stimulatio
129 r day (low-carbohydrate diet) or to restrict caloric intake by 500 calories per day with <30% of calo
130 ng humans, can achieve precise regulation of caloric intake by adjusting consumption in response to c
131 of a fat emulsion maintained constant hourly caloric intake by adjusting the number of dry licks in r
132 fructose that supplies approximately 10% of caloric intake by Americans clearly affects absorption o
135 ivity, other breast cancer risk factors, and caloric intake controlled for (false discovery rate <0.2
138 habditis elegans longevity genes, restricted caloric intake) demonstrate the feasibility of extending
139 e, cigarette smoking, body mass index, total caloric intake, dietary intake of lutein and zeaxanthin,
140 e quality of dietary intake (particularly in caloric intake, dietary protein intake, dietary fiber in
143 restriction, exhibited a greater increase in caloric intake during sleep restriction (d = 0.62), and
144 ly differ in daily caloric intake, increased caloric intake during sleep restriction, or meal timing.
147 iatal region showed increased sensitivity to caloric intake even in the absence of gustatory inputs.
149 uch reward-related consumption can result in caloric intake exceeding requirements and is considered
153 occurred in the absence of a change in total caloric intake, fat pad weights, and adipose-related mea
155 ypercaloric diets (in 75% excess of habitual caloric intake) for 3 days, enriched in unsaturated FA (
157 nactivity in the past 30 days, proportion of caloric intake from sweetened beverages (24-hour recall)
160 th increased physical activity and decreased caloric intake have been proposed to reduce insulin as a
161 ries that help in balancing food choice with caloric intake; however, this metabolic learning or memo
162 parate experiments a significant increase in caloric intake in a subsequent laboratory chow meal.
165 ounteracts the negative effects of increased caloric intake in mice fed a diet rich in fat and fructo
167 ats lack compensatory mechanisms to increase caloric intake in response to a T3-induced increase in E
168 l-3-yl)pyridine] significantly reduced total caloric intake in these mice during high-fat access.
169 ial sweeteners in rats resulted in increased caloric intake, increased body weight, and increased adi
170 whites did not significantly differ in daily caloric intake, increased caloric intake during sleep re
172 this epidemic has been attributed to excess caloric intake, induced by ever present food cues and th
173 alent among obese individuals with excessive caloric intake, insulin resistance, and type II diabetes
174 insulin), and the age 9-10 y insulin x total caloric intake interaction predicted IFG and T2DM at age
177 ntained within a narrow range; even when the caloric intake is excessive, compensatory FA-induced upr
181 s not tested whether an objectively measured caloric intake is positively associated with neural resp
182 nt to diet-induced obesity even though their caloric intake is similar to that of wild-type mice, sug
183 ant flies take larger but fewer meals, their caloric intake is the same as that of wild-type flies.
185 ant proportion of the resulting reduction in caloric intake is unaccounted for by the restrictive and
187 on and energy expenditure, with no change in caloric intake, locomotor activity, or thyroid hormone l
189 were grouped into one of four categories of caloric intake: <25%, 25-49%, 50-74%, and > or =75% of a
190 sought to assess sex and race differences in caloric intake, macronutrient intake, and meal timing du
191 that enhance the desire to eat and increase caloric intake, making it exceedingly difficult for indi
192 ing epidemiological evidence indicating that caloric intake may influence risk for AD and raises the
193 l outcomes but other studies concluding that caloric intake may not be important in determining outco
194 uts, vegetables, and spices, or even reduced caloric intake, may lower age-related cognitive declines
195 all patients with bvFTD had increased total caloric intake (mean, 1344 calories) compared with the A
196 del adjusted for age, CAG repeat length, and caloric intake, MeDi was not associated with phenoconver
197 for health behaviors (drinking, smoking, and caloric intake), medications for hypertension, high chol
198 onal studies suggest that achieving targeted caloric intake might not be necessary since provision of
199 Appetite, tiredness, nausea, well-being, caloric intake, nutritional status, and function were pr
200 nce appetite, tiredness, nausea, well-being, caloric intake, nutritional status, or function after 2
201 estricted feeding (TRF) regimen in which all caloric intakes occur consistently within </= 12 h every
203 rose ad libitum, Fat/Sucrose pair-fed to the caloric intake of CHO, or Fat/Sucrose at 60% of ad libit
206 erine growth in FASDEL mice by supplementing caloric intake of pregnant dams normalized beta-cell mas
207 libitum, HPD ad libitum, HPD pair-fed to the caloric intake of the BCD, or the HPD at 60% of ad libit
208 lower than those of nonvegetarians and that caloric intake of vegetarians is typically lower than th
209 tionally includes high amounts (30% of total caloric intake) of saturated fat rather than omega-6 fat
210 hGH) gene, GH1, to assess the effect of high caloric intake on expression as well as the local chromo
211 hysical activity muted the effects of excess caloric intake on insulin levels, GH1 promoter hyperacet
213 he first in-depth analysis of the effects of caloric intake on NK cell phenotype and function and pro
215 lating fatty acids but produced no change in caloric intake or body weight, stimulated novelty-seekin
216 on of high-fructose diets leads to increased caloric intake or decreased energy expenditure, thereby
217 ed by increasing physical activity, reducing caloric intake, or both, should lower insulin levels, pr
219 of physical activity (P < .0001), and lower caloric intake (P < .02) were all independently associat
220 sleep restriction, subjects increased daily caloric intake (P < 0.001) and fat intake (P = 0.024), i
221 2.36; 95% CI, 1.0-5.57; P = .05) and higher caloric intake (P = .04) were associated with risk of ph
223 DEDS (P = 0.016) and DVS (P = 0.048) but not caloric intake (P = 0.585) significantly predicted outco
225 functions including digestion, regulation of caloric intake, pancreatic insulin secretion, and metabo
226 than women due to a larger increase in daily caloric intake, particularly during late-night hours.
227 aracteristics of the Western lifestyle (high caloric intake, physical inactivity, obesity, smoking, a
228 x, television watching, caregiver education, caloric intake, poverty-income ratio, race/ethnicity, se
230 hormone levels, resting energy expenditure, caloric intake, pulmonary function, or clinical status.
232 in the highest physical activity and lowest caloric intake quintile compared with insulin levels of
233 regression, adjusted for age, gender, total caloric intake, reason for screening (routine or other),
237 nate represented 1.4% and 0.08% of the total caloric intake, respectively, developed liver fibrosis a
240 icity, education, apolipoprotein E genotype, caloric intake, smoking, medical comorbidity index, and
243 to income ratio, sex, serum cotinine level, caloric intake, television watching, and urinary creatin
245 produces a sustained decrease in ad libitum caloric intake that may be mediated by increased central
247 et refeeding on the respective formulas with caloric intake titrated to achieve weight maintenance.
248 n, but the need for a long-term reduction in caloric intake to achieve these benefits has been assume
253 Secondary outcomes included self-reported caloric intake, walking, and moderate physical activity.
254 iduals after adjustment for age, gender, and caloric intake was -6 mg/d (P = 0.95) in the control gro
257 ) or low-fat (LF; 12% Kcal) diets, and equal caloric intake was maintained until euthanasia at 7 mont
264 re (PBMR), predicted energy expenditure, and caloric intake were calculated using recommended formula
266 an increased drive to eat to restore normal caloric intake whilst reducing thermogenesis in order to
267 o be at lower risk than people with the same caloric intake who consumed smaller amounts of dietary f
269 PDE10A deficiency produces a decrease in caloric intake without affecting meal frequency, daytime
270 ghrelin plasma concentrations, satiety, and caloric intake.Women (n = 39) were more sensitive toward
271 als, the female AT(2)KO mice with equivalent caloric intake (WT: 1424+/-48; AT(2)KO:1456+/-80 kcal) g
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。