戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 reviously found that the 4-[4-(N-substituted carbamoyl)-1-piperazinyl]-6,7-dimethoxyquinazolines can
2 481,715 (quinoxaline-2-carboxylic acid [4(R)-carbamoyl-1(S)-(3-fluorobenzyl)-2(S),7-dihydroxy-7-methy
3 n produced the corresponding N-substituted C-carbamoyl-1,2,3-triazoles 7a-12a in good to excellent yi
4 -(2'-hydroxyiminomethyl-1'-pyridinium)-3-(4'-carbamoyl-1-pyridinium) (HI-6).
5 -(2'-hydroxyiminomethyl-1'-pyridinium)-3-(4'-carbamoyl-1-pyridinium)).
6 lted in the corresponding 3-functionalized 1-carbamoyl-1H-pyrroles.
7 tetramethyl-1-piperidynyloxyl (Tempol) and 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3CP), a
8 ified via LC-LTQ-Orbitrap MS and NMR as N-(4-carbamoyl-2-imino-5-oxoimidazolidin)formamido-N-methoxya
9 ine aminopeptidase type 2 inhibitor, [(1R)-1-carbamoyl-2-methyl-propyl]-carbamic acid-(3R,4S,5S,6R)-5
10 iota, and its synthetic derivative, the N-(1-carbamoyl-2-phenyl-ethyl) butyramide, FBA, have been dem
11 /- 0.03 nM) > 4-{3-[6-amino-9-(5-cyclopropyl-carbamoyl-3,4-dihydroxytetrahydrofuran-2-yl )-9H-purin-2
12                                            8-Carbamoyl-3-methylimidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-
13     This reaction provides ready access to N-carbamoyl-3-monosubstituted oxindoles.
14 ibitors, URB597 (cyclohexyl carbamic acid 3'-carbamoyl-3-yl ester) and URB694 (6-hydroxy-[1,1'-biphen
15   The beta1-adrenoceptor antagonist 1-[2-((3-Carbamoyl-4-hydroxy)phenoxy)ethylamino]-3-[4-(1-methyl-4
16 oprolol, bisoprolol, and CGP-20712 [1-[2-((3-carbamoyl-4-hydroxy)phenoxy)ethylamino]-3-[4-(1-methyl-4
17                                        [2-(3-Carbamoyl-4-hydroxyphenoxy)-ethylamino]-3-[4-(1-methyl-4
18 nel of beta1-AR antagonists, including [2-(3-carbamoyl-4-hydroxyphenoxy)-ethylamino]-3-[4-(1-methyl-4
19 talyzed conjugate addition of Et(2)Zn to a N-carbamoyl-4-pyridone with an er of 91.5:8.5.
20                                            N-carbamoyl-4-pyridones undergo conjugate addition reactio
21 ntigen (PSMA), N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-(18)F-fluorobenzyl-l-cysteine ((18)F-DCFBC)
22 e cancer using N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-(18)F-fluorobenzyl-L-cysteine ((18)F-DCFBC)
23 onstrated that N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-(18)F-fluorobenzyl-L-cysteine ((18)F-DCFBC)
24  = 3 nM); its prodrug amino-acetic acid 4-[2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-trifluoromethyl-4,5,6,
25 fied compound 35 (cyclohexylcarbamic acid 3'-carbamoyl-5-hydroxybiphenyl-3-yl ester) as the most pote
26                                The nitrone 5-carbamoyl-5-methyl-1-pyrroline N-oxide (AMPO) was synthe
27  novel and analogous amido nitrone 2-amino-5-carbamoyl-5-methyl-1-pyrroline N-oxide (NH(2)-AMPO).
28 -aminophenyl)-1, 2-dihydro-1-methyl-2-propyl-carbamoyl-6,7-methylenedioxyphthalazine++ +, suppressed
29 ibitor URB937 (3, cyclohexylcarbamic acid 3'-carbamoyl-6-hydroxybiphenyl-3-yl ester) is extruded from
30 unds of most interest were found to have a 5-carbamoyl-8-fluoro-3-amino-3,4-dihydro-2 H-1-benzopyran
31                     Compounds containing a 5-carbamoyl-8-fluoro-3-amino-3,4-dihydro-2H-1-benzopyran a
32 ietane-2-ylidene)-2-[N-(4-methylthiazol-2-yl)carbamoyl]acet ate (YH439)]-treated and suspension cells
33  for a universal tRNA modification, threonyl carbamoyl adenosine (t6A), found in all tRNAs that pair
34 , vinyl, cyano, aryl and N-heteroaryl, acyl, carbamoyl, alkoxycarbonyl, imidoyl, boryl, silyl, phosph
35 tions from N-Boc pyrrolidine via an alpha-(N-carbamoyl)alkylcuprate vinylation reaction followed by N
36 yields obtained in the reactions of alpha-(N-carbamoyl)alkylcuprates [i.e., N-Boc-protected alpha-ami
37                                     alpha-(N-Carbamoyl)alkylcuprates prepared from high-quality sec-b
38 es or perfluorobenzoates react with alpha-(N-carbamoyl)alkylcuprates to afford scalemic alpha-(N-carb
39 y treatment with CuCN.2LiCl affords alpha-(N-carbamoyl)alkylcuprates which react with propargyl halid
40 te adducts obtained via coupling of alpha-(N-carbamoyl)alkylcuprates with alpha,beta-ynoates, alpha-a
41 lfonates, and phosphates give good yields of carbamoyl allenes, while the acetates afford low yields.
42                                 The alpha-(N-carbamoyl) allenes can be cyclized to 2-oxazolidinones o
43 tes, acetates, and epoxides to give alpha-(N-carbamoyl) allenes via an anti-S(N)2' substitution proce
44 yl)alkylcuprates to afford scalemic alpha-(N-carbamoyl) allenes which undergo N-Boc deprotection and
45                      The reluctance of gamma-carbamoyl-alpha,beta-enoates to undergo E/Z isomerizatio
46 gue 16-({[4-chloro-3-(trifluoromethyl)phenyl]carbamoyl}amino)hexadecanoic acid (13b) decreased prolif
47 phenyl region of compound 3, focusing on the carbamoyl and hydroxyl groups in the distal and proximal
48                              The addition of carbamoyl anions derived from N,N-disubstituted formamid
49                                              Carbamoyl anions were found to smoothly react with chira
50                                              Carbamoyl anions, generated from N,N-disubstituted forma
51 catalyzing the reversible interconversion of carbamoyl aspartate and dihydroorotate.
52                       The transient time for carbamoyl aspartate formation was 26 s, compared with th
53                The side chain carboxylate of carbamoyl aspartate is polarized through a direct electr
54          At pH 7.4, the equilibrium ratio of carbamoyl aspartate to dihydroorotate is 17 and complex
55 the pH-rate profiles for the condensation of carbamoyl aspartate to dihydroorotate showed that a sing
56 catalyzing the reversible interconversion of carbamoyl aspartate to dihydroorotate.
57 .2.3) catalyze the reversible cyclization of carbamoyl aspartate to form dihydroorotate in de novo py
58 se) catalyzes the reversible condensation of carbamoyl aspartate to form dihydroorotate in de novo py
59                            This implies that carbamoyl aspartate, an intermediate of this pathway, mu
60                    During the cyclization of carbamoyl aspartate, Asp 250 initiates the reaction by a
61 re has citrate, a near isosteric analogue of carbamoyl aspartate, bound to the active sites of both e
62 ecursors, carbamoyl phosphate, aspartate, or carbamoyl aspartate.
63 f an electron-withdrawing group (i.e., acyl, carbamoyl) at this position increased the stability of t
64 synthesized, based on 2'(3')-O-(2-aminoethyl)carbamoyl-ATP (edaATP).
65 (7-diethylaminocoumarin-3-carboxamido)propyl]carbamoyl}ATP), which was hydrolyzed to the diphosphate.
66 phenylethyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamoyl) benzoic acid (11) was the most effective whil
67 nd 2-((9,10-dioxo-9,10-dihydroanthracen-2-yl)carbamoyl) benzoic acid (H2L5828102), novel nonlipid and
68 143), 4,5-dichloro-2-((9-oxo-9H-fluoren-2-yl)carbamoyl)benzoic acid (H2L5547924), and 2-((9,10-dioxo-
69  yielded compounds 2-((9-oxo-9H-fluoren-2-yl)carbamoyl)benzoic acid (NSC12404), 2-((3-(1,3-dioxo-1H-b
70 omeric ratios are obtained with the alpha-(N-carbamoyl)benzylcuprates.
71 roxyphenyl)propanoic acid and a new N(delta)-carbamoyl-beta-sulfated asparagine.
72 the FAAH inhibitor cyclohexylcarbamic acid 3-carbamoyl biphenyl-3-yl ester (URB597) on mechanically e
73 ndamide (AEA) and cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597), an inhibitor of
74                                   URB597 (3'-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate) reduces thi
75 hanism involving oxidative addition into the carbamoyl chloride bond to generate a high valent Pd(IV)
76 rivative, but rather gives (N-ethoxycarbonyl)carbamoyl chloride upon thermolysis, or (N-ethoxycarbony
77 goes an intramolecular cross-coupling with a carbamoyl chloride.
78 gen chloride being formed as coproducts, and carbamoyl chlorides or isocyanates generated as yield-di
79 loromethylene)oxindoles from alkyne-tethered carbamoyl chlorides using PdCl2(PhCN)2 as the catalyst.
80 ic lipid 3beta-[N-(N',N'-dimethylaminoethane)carbamoyl]cholesterol (DC-Chol), two potent adjuvants, d
81 FP and 7-diethylamino-3-[N-(2-maleimidoethyl)carbamoyl]coumarin (MDCC).
82                  Acyl-, alkoxycarbonyl-, and carbamoyl cyanates R-CO-OCN are predicted to be in some
83                    By using (N-tosyloxy)-3-O-carbamoyl-D-glucal 10, which removes the need for a hype
84 ingle-crystal X-ray analysis or studies with carbamoyl derivatives of amines of known configuration.
85                   The title (chlorocarbonyl)(carbamoyl)disulfane cannot be converted to the elusive D
86 n the reaction of the title (chlorocarbonyl)(carbamoyl)disulfane with excess N-methylaniline.
87  are reported for the title (chlorocarbonyl)(carbamoyl)disulfane; for (methoxycarbonyl)(N-ethoxycarbo
88  an umpolung fashion to the beta-carbon of N-carbamoyl enamines (N-vinyl ureas).
89 chloro-2-methox y-acridin-9-ylamino)-propyl]-carbamoyl]-ethyl)-carbamic acid tert-butyl ester, showed
90 iogenesis inhibitors, such as O-(chloracetyl-carbamoyl) fumagillol (TNP-470), are thus emerging as a
91 the angiogenesis inhibitor O-(N-chloroacetyl-carbamoyl)-fumagillol (TNP-470) and the alkylating agent
92 iogenesis inhibitor, AGM-1470,O-chloroacetyl-carbamoyl-fumagillol (TNP-470), after two-thirds hepatec
93                         P and Q contain urea/carbamoyl functionalities designed to increase potential
94 des, ether glucuronides, N-glucuronides, and carbamoyl glucuronides, have been shown to be substrates
95 s 14 and 24 commenced with removal of the 10-carbamoyl group from MC, followed by reductive conversio
96 es indicate that FeIIiso-PEPLM, in which the carbamoyl group is shifted on the mannose sugar, forms t
97 cluded hydroxylation, ring cleavage, loss of carbamoyl group, and decarboxylation, as well as O-methy
98 roxylation, ring contraction, or loss of the carbamoyl group, followed by conjugation to glucose or c
99 nosubstituted in the 3-position by alkyl and carbamoyl groups undergo nucleophilic ring opening by ar
100 lorination, and the introduction of acyl and carbamoyl groups.
101 fonamido group yielded greater activity than carbamoyl groups.
102                                 Especially N-carbamoyl imines were found to be useful in the enantios
103 to cover enantioselective methods based on N-carbamoyl imines, focusing on synthetically useful proto
104 ch previously have not been reported using N-carbamoyl-imines with simple ketone enolates, became our
105 likely proceeding through the formation of N-carbamoyl iminium.
106 yl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-in doline), or vehicle were microinjected bil
107                   Strikingly, in subunit II, carbamoyl L-aspartate is observed binding near the binuc
108                                          7-O-Carbamoyl-l,d-heptose and d-glycero-alpha-d-manno-heptos
109 oyl phosphate (CP) and l-aspartate to form N-carbamoyl-l-aspartate and inorganic phosphate.
110  that conversion of l-aspartate (l-Asp) to N-carbamoyl-l-aspartate by PyrB may reduce the amount of l
111 5-Difluoro-4-[bis(2-chloroethyl)amino]phenyl]carbamoyl-l-glutamic acid gave a differential of >227 in
112             Sixteen lipophilic N-(X)sulfonyl carbamoyl lariat ethers with polyether ring sizes of 12-
113 al-D4Cpa-D3Pal-Ser-4Aph(L-hydroorotyl)-D4Aph(carbamoyl)-Leu-ILys-Pro -DAla-NH2 (acetate salt is FE200
114                                          The carbamoyl linkage of these nucleotide analogs undergoes
115 -hydroxyllup-20(29)-en-28-oyl]-7-aminoheptyl]carbamoyl]methane (A43D, 4) was a potent HIV-1 entry inh
116  accumulation of the unwanted intermediate D-carbamoyl-methionine was reduced fourfold compared to ce
117    Here, we report a class of propynoic acid carbamoyl methyl amides (PACMAs) that are active against
118 in, we discovered a series of propynoic acid carbamoyl methyl-amides (PACMAs) with potent cytotoxicit
119 (R5 = Me, Ph, CH2Ph), and different acyl and carbamoyl moieties (R7) were appended on the 7-amino gro
120  receptor (Y1R) antagonist BIBP3226, bearing carbamoyl moieties at the guanidine group, revealed subn
121 fficulties connected with the removal of the carbamoyl moiety in target molecules.
122  Sn ligands, 9-N-(4H-thieno[3,2-c]chromene-2-carbamoyl)-Neu5Acalpha2-3Galbeta1-4GlcNAc ((TCC)Neu5Ac),
123 ation intermediate, whether generated from N-carbamoyl- or N-sulfonyl-substituted allenamides.
124 y-3-oxopropyl)-4-(((4-methoxyphenyl)(methyl) carbamoyl)oxy)indolin-1-ium hydrochloride) with IC50s of
125 gen mustard analog of [4-[[N-(3-chlorophenyl)carbamoyl]oxy]-2-butynyl]trimethylammonium chloride (McN
126 transfers (ATP), acyl transfers (acetyl-CoA, carbamoyl-P), methyl transfers (SAM), prenyl transfers (
127 unable to use glutamine for the synthesis of carbamoyl-P.
128 o-3,4-dihydro-2H-benzo[1,4]oxazin-6-ylmethyl)carbamoyl]p yrazolo[1,5-a]pyrimidine-7-carbonyl}amino)in
129                     Intradermal injection of carbamoyl PAF (CPAF; 1-hexadecyl-2-N-methylcarbamoyl gly
130  or the human epidermal cell line A-431 with carbamoyl-PAF or ultraviolet B radiation resulted in int
131 he metabolically stable PAF receptor agonist carbamoyl-PAF resulted in increased interleukin-8 mRNA a
132 with PAF receptor antagonists inhibited both carbamoyl-PAF-induced and ultraviolet-B-induced interleu
133   An additional two series of (-)- and (+)-O-carbamoyl phenols of pyrroloindole and furoindole were o
134 M for BChE), with the exception of the (+)-O-carbamoyl phenols of pyrroloindole, which lacked activit
135 inhibitors of cholinesterase: (-)- and (+)-O-carbamoyl phenols of tetrahydrofurobenzofuran and methan
136 ic acid-Schiff staining, urea production via carbamoyl phosphatase synthetase I staining, and cell vi
137 ucleotide biosynthesis, the reaction between carbamoyl phosphate (CP) and l-aspartate to form N-carba
138 responds to the position of the phosphate of carbamoyl phosphate (CP) and the position of the phospho
139                                              Carbamoyl phosphate (CP) has a half-life for thermal dec
140                A saturating concentration of carbamoyl phosphate alone has little influence on the sm
141 vity and decreased substrate affinity toward carbamoyl phosphate and aspartate compared to the corres
142 ropic cooperativity, and the binding of both carbamoyl phosphate and aspartate were extremely comprom
143  little change in the Km for the substrates, carbamoyl phosphate and aspartate.
144 ing established that the natural substrates, carbamoyl phosphate and L-aspartate, do not induce in th
145  identify the enzymatic synthesis of N-amino carbamoyl phosphate and N-hydroxy carbamoyl phosphate fr
146 lts in impaired synthesis of citrulline from carbamoyl phosphate and ornithine.
147 of the mutants were unable to synthesize any carbamoyl phosphate and the rest were severely crippled.
148  absence and presence of the first substrate carbamoyl phosphate are reported.
149 lex with citric acid bound in the postulated carbamoyl phosphate binding site, was determined in two
150 l change that interferes with the binding of carbamoyl phosphate but has little effect once carbamoyl
151   The carboxy phosphate (residues 1-400) and carbamoyl phosphate domains (residues 553-933) also cont
152 e the absolute requirement of the binding of carbamoyl phosphate for the creation of the high-affinit
153 oyl-phosphate synthetase 1 activity produces carbamoyl phosphate for urea synthesis, and deficiency r
154           The absence of an initial burst of carbamoyl phosphate formation eliminates product release
155  of the partial reactions, the diminution of carbamoyl phosphate formation, and the percentage of the
156  Escherichia coli catalyzes the formation of carbamoyl phosphate from 2 mol of ATP, bicarbonate, and
157 of CPS.A and CPS.B proteins that synthesized carbamoyl phosphate from ATP, bicarbonate, and ammonia.
158  Escherichia coli catalyzes the formation of carbamoyl phosphate from bicarbonate, glutamine, and two
159  Escherichia coli catalyzes the formation of carbamoyl phosphate from bicarbonate, glutamine, and two
160 of N-amino carbamoyl phosphate and N-hydroxy carbamoyl phosphate from hydroxylamine and hydrazine.
161 y 118 kDa) and catalyzes the biosynthesis of carbamoyl phosphate from MgATP, bicarbonate, and glutami
162 channeling ensures the efficient transfer of carbamoyl phosphate from the active site of CPSase to th
163 gh rapidly degraded at high temperature, the carbamoyl phosphate generated in situ by A. aeolicus car
164 hosphate synthetase-1 (CPS1), which produces carbamoyl phosphate in the mitochondria from ammonia and
165 d-type enzyme is required for the binding of carbamoyl phosphate in the proper orientation so as to i
166 must perform during the overall synthesis of carbamoyl phosphate in the wild type enzyme and the spec
167 ontrast to the wild-type enzyme, addition of carbamoyl phosphate induced a significant alteration in
168 nally, the data indicate that the binding of carbamoyl phosphate induces conformational changes that
169 rbamoyl phosphate but has little effect once carbamoyl phosphate is bound.
170 miting step for the steady-state assembly of carbamoyl phosphate is either the formation, migration,
171 uples the two partial reactions such that no carbamoyl phosphate is produced.
172 the catalytic cysteine residue, can generate carbamoyl phosphate only in the presence of free ammonia
173 ng the altered CAD with the ATCase substrate carbamoyl phosphate or the bisubstrate analogue N-phosph
174  the catalytic activity for the synthesis of carbamoyl phosphate relative to the wild type CPS, respe
175                         Vaccination with the carbamoyl phosphate synthase (CPS) mutant strain of Toxo
176 ioxin resulted in concomitant recruitment of carbamoyl phosphate synthase 1 (CPS1) to the NC-XRE.
177 ed to increase the level of succinylation on carbamoyl phosphate synthase 1, which is a known target
178 erence-mediated knockdown of a mitochondrial carbamoyl phosphate synthase impairs the response of nit
179 acetylglutamate, the obligatory activator of carbamoyl phosphate synthase-1 (CPS1).
180 ammonemia from reduced expression of hepatic carbamoyl phosphate synthase-I.
181 arbamoylases, and an internal duplication in carbamoyl phosphate synthase.
182 minases is demonstrated for Escherichia coli carbamoyl phosphate synthase.
183                      The partial recovery of carbamoyl phosphate synthesis activity in the double mut
184 alues of K(m) for glutamine, but the overall carbamoyl phosphate synthesis reaction is unperturbed.
185 5L exhibited a substantially reduced rate of carbamoyl phosphate synthesis, but the rate of ATP turno
186 ne or free ammonia as the nitrogen donor for carbamoyl phosphate synthesis.
187 imiting step in this pathway is catalysed by carbamoyl phosphate synthetase (CPS II), part of the mul
188                                              Carbamoyl phosphate synthetase (CPS) from Escherichia co
189                                              Carbamoyl phosphate synthetase (CPS) from Escherichia co
190               The X-ray crystal structure of carbamoyl phosphate synthetase (CPS) from Escherichia co
191                                              Carbamoyl phosphate synthetase (CPS) from Escherichia co
192                                              Carbamoyl phosphate synthetase (CPS) from Escherichia co
193                            The heterodimeric carbamoyl phosphate synthetase (CPS) from Escherichia co
194 rt of carbamate through the large subunit of carbamoyl phosphate synthetase (CPS) from Escherichia co
195                                              Carbamoyl phosphate synthetase (CPS) is a member of the
196                   The transfer of ammonia in carbamoyl phosphate synthetase (CPS) was investigated by
197 st three enzymes in pyrimidine biosynthesis, carbamoyl phosphate synthetase (CPS), aspartate transcar
198  individual mutant lines deficient in either carbamoyl phosphate synthetase (CPS), the first enzyme i
199 l phosphate generated in situ by A. aeolicus carbamoyl phosphate synthetase (CPSase) was channeled to
200 a large multifunctional protein that carries carbamoyl phosphate synthetase (CPSase), aspartate trans
201                                        Human carbamoyl phosphate synthetase (hCPS) has evolved critic
202                                              Carbamoyl phosphate synthetase 1 (CPS1) is a liver-speci
203  the mitochondrial matrix and interacts with carbamoyl phosphate synthetase 1 (CPS1), an enzyme, cata
204                 Systematic optimization of a carbamoyl phosphate synthetase 1 derived, glutarylated p
205 ylates and activates a mitochondrial enzyme, carbamoyl phosphate synthetase 1, which mediates the fir
206 proteins 70 and 90 (HSP-70; HSP-90), and the carbamoyl phosphate synthetase 2/aspartate transcarbamyl
207 he inhibitor UTP and the activator PRPP, the carbamoyl phosphate synthetase activity is controlled by
208 the sequential action of MAPK and PKA on the carbamoyl phosphate synthetase activity of CAD.
209                                          The carbamoyl phosphate synthetase domain of the multifuncti
210                                              Carbamoyl phosphate synthetase from E. coli catalyzes th
211                                              Carbamoyl phosphate synthetase from Escherichia coli cat
212 x-ray crystal structure of the heterodimeric carbamoyl phosphate synthetase from Escherichia coli has
213 arginine serum levels on chromosome 2 at the carbamoyl phosphate synthetase I locus, on chromosome 5
214 ine nucleotide synthesis is catalyzed by the carbamoyl phosphate synthetase II (CPSase) domain of CAD
215                                              Carbamoyl phosphate synthetase II (CPSII) is part of car
216 the virulence of T. gondii mutants that lack carbamoyl phosphate synthetase II (uracil auxotrophs) to
217 mately 25 A in length, whereas the tunnel in carbamoyl phosphate synthetase is nearly 100 A long.
218 mensional structures of tryptophan synthase, carbamoyl phosphate synthetase, glutamine phosphoribosyl
219 n some cases, such as biotin carboxylase and carbamoyl phosphate synthetase, the B-domains move signi
220       KL cells express the urea cycle enzyme carbamoyl phosphate synthetase-1 (CPS1), which produces
221  the G359F (small subunit) mutant protein of carbamoyl phosphate synthetase.
222  is similar to the folding of this domain in carbamoyl phosphate synthetase.
223 ransferase type I domain of Escherichia coli carbamoyl phosphate synthetase.
224 ned a 240 kDa protein that was identified as carbamoyl phosphate synthetase/aspartate transcarbamoyla
225 l phosphate synthetase II (CPSII) is part of carbamoyl phosphate synthetase/aspartate transcarbamoyla
226                                              Carbamoyl phosphate synthetase/aspartate transcarbamylas
227       Depending on their physiological role, carbamoyl phosphate synthetases (CPSs) use either glutam
228                                              Carbamoyl phosphate synthetases (CPSs) utilize either gl
229 phate synthetase catalyzes the production of carbamoyl phosphate through a reaction mechanism requiri
230 tase from E. coli catalyzes the synthesis of carbamoyl phosphate through a series of four reactions o
231 ast step in this pathway, converting ADP and carbamoyl phosphate to ATP and ammonium carbamate.
232 inine dihydrolase pathway converting ADP and carbamoyl phosphate to ATP and carbamate.
233                             The inability of carbamoyl phosphate to create the high-affinity binding
234 l-molecule phosphodonors acetyl phosphate or carbamoyl phosphate under conditions in which a control
235          This mutant is unable to synthesize carbamoyl phosphate using glutamine as a nitrogen source
236                                     However, carbamoyl phosphate was able to shift the structure of t
237 teady-state time course for the formation of carbamoyl phosphate was linear with an overall rate cons
238                 However, neither ammonia nor carbamoyl phosphate was produced, which implies that pur
239  formation of phosphate, ADP, glutamate, and carbamoyl phosphate were determined.
240 bsaturating amounts of PALA or succinate and carbamoyl phosphate) caused a hyperbolic increase and de
241 of ligands, in the presence of the substrate carbamoyl phosphate, and in the presence of the bisubstr
242 xaloacetate, the phosphorylation of MgADP by carbamoyl phosphate, and the bicarbonate-dependent ATPas
243 less negatively charged than its precursors, carbamoyl phosphate, aspartate, or carbamoyl aspartate.
244 topped-flow experiments, using aspartate and carbamoyl phosphate, confirm that the change in excimer
245 gue succinate, in the presence of saturating carbamoyl phosphate, to the pyrenelabeled enzyme caused
246 our other metabolites, S-adenosylmethionine, carbamoyl phosphate, UDP-glucose, and Delta(2)-isopenten
247 y two long interdomain helices: the putative carbamoyl phosphate-binding domain and a binding domain
248                                 The putative carbamoyl phosphate-binding site is similar to those in
249 mino group of Asp and the carbonyl carbon of carbamoyl phosphate.
250 rmational change induced upon the binding of carbamoyl phosphate.
251 le to utilize glutamine for the synthesis of carbamoyl phosphate.
252  ammonia for the ATP-dependent generation of carbamoyl phosphate.
253 l reactions but not the overall synthesis of carbamoyl phosphate.
254 ghly conserved residue that is essential for carbamoyl-phosphate binding.
255 he lead variant on 2q24 (rs715) localizes to carbamoyl-phosphate synthase 1 (CPS1), which encodes a m
256 y facilitating pyrimidine synthesis via CAD (carbamoyl-phosphate synthase 2, aspartate transcarbamyla
257 xpression profile of the c-Myc target genes, carbamoyl-phosphate synthase-aspartate carbamoyltransfer
258 bited complex I of the respiratory chain and carbamoyl-phosphate synthase-I (CPS-I), with an EC(50) a
259                                              Carbamoyl-phosphate synthetase (CPS) from Escherichia co
260  hyperthermophile, has neither a full-length carbamoyl-phosphate synthetase (CPSase) resembling the e
261                             In mitochondria, carbamoyl-phosphate synthetase 1 activity produces carba
262           The tri-functional enzyme contains carbamoyl-phosphate synthetase 2 (CPS2), aspartate trans
263  which directly phosphorylates S1859 on CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamo
264 hatidylinositol 4-kinases (PI4KA and PI4KB), carbamoyl-phosphate synthetase 2, aspartate transcarbamy
265           Moreover, EGFR signaling activated carbamoyl-phosphate synthetase 2, aspartate transcarbamy
266                                  Cytoplasmic carbamoyl-phosphate synthetase 2, however, is part of a
267 uted to altered allosteric regulation of the carbamoyl-phosphate synthetase activity of CAD (carbamoy
268                                              Carbamoyl-phosphate synthetase catalyzes the production
269                       The frequencies of the carbamoyl-phosphate synthetase genotypes in the study po
270 ferential plasma proteins detected by iTRAQ, carbamoyl-phosphate synthetase I (CPSI, related to urea
271  this closed form of biotin carboxylase with carbamoyl-phosphate synthetase is presented.
272 skewed distribution of the genotypes for the carbamoyl-phosphate synthetase variants at position 1405
273 trations of amino acids and genotypes of the carbamoyl-phosphate synthetase variants were determined
274 e thioester intermediate of Escherichia coli carbamoyl-phosphate synthetase, indicates that the subst
275  for threonine at position 1405 [T1405N]) in carbamoyl-phosphate synthetase, which controls the rate-
276 urea cycle--in particular, the efficiency of carbamoyl-phosphate synthetase--may contribute to the av
277 bamoyl-phosphate synthetase activity of CAD (carbamoyl-phosphate synthetase-aspartate carbamoyltransf
278 ession of mature hepatocytic markers such as carbamoyl-phosphate synthetase1 and several cytochrome P
279 oning was used to identify a mutation in the carbamoyl-phosphate synthetase2-aspartate transcarbamyla
280                                     Although carbamoyl-phosphate synthetases (CPSs) share sequence id
281  with antagonist ethyl 6-(4-((benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZ
282 ne-porphyrin bears an S-acetyl or S-(N-ethyl)carbamoyl-protected thiol moiety, thereby avoiding handl
283 inoalanine is an FeII ligand and the mannose carbamoyl provides either a ligand to the FeII or signif
284 ido-2,2,5,5-tetramethylpyrrolidine-N-oxyl (3-carbamoyl-proxyl) [3-CP] was performed.
285 n of agmatine (decarboxylated arginine) to N-carbamoyl putrescine and ammonia.
286 tivity studies evolved a tricyclic series of carbamoyl pyridines that demonstrated properties indicat
287            These drugs stem from a series of carbamoyl pyridone analogues designed using a two-metal
288 ing fusion stereocenter within the tricyclic carbamoyl pyridone scaffold led to a critical substrate
289                             Stereogenic 2-(N-carbamoyl)pyrrolidinylcuprates prepared from scalemic (i
290 ough group-transfer cyclization reactions of carbamoyl radicals, undergo a Chugaev-like thermal elimi
291  modified by a 43-Da substituent (possibly a carbamoyl substituent) suggests that the lysines in this
292  ethyl 2-(N-((4-iodo-6-methoxypyrimidin-2-yl)carbamoyl)sulfamoyl)benzoate (10c), which has a K(i) val
293 lyzed coupling reaction of azoles with alpha-carbamoyl sulfides.
294    Alkoxycarbonyl-, (alkylthio)carbonyl- and carbamoyl thiocyanates are isolable and have higher calc
295 amino acid residues, including an uncommon 3-carbamoyl threonine, and a phosphoserine residue in cele
296 -beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine, (ms2t6A) is reported.
297 a combined metalation-addition of a carbonyl-carbamoyl transfer to reveal in situ stereodefined alpha
298 of carbamoylphosphate synthase and aspartate carbamoyl transferase, respectively.
299    From this enhanced set, we identified the carbamoyl triazole TCMDC-134379 (1), a known serine prot
300  we demonstrate that modification of the C13-carbamoyl unit can be accommodated in the binding site o

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top