コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 is characterized by progressive loss of the cartilage matrix.
2 ts and blood vessels, invade the mineralized cartilage matrix.
3 AP-positive cells resorbing the hypertrophic cartilage matrix.
4 nce of the structural integrity of articular cartilage matrix.
5 y role in maintaining the integrity of human cartilage matrix.
6 melysin inhibitor that blocks the erosion of cartilage matrix.
7 to cleavage and removal of collagen from the cartilage matrix.
8 reduction in cell size and in the amount of cartilage matrix.
9 grafts contained a mixed hyaline and fibrous cartilage matrix.
10 shearing, and transport of TGF-beta into the cartilage matrix.
11 rocyte biology, leading to catabolism of the cartilage matrix.
12 cyte terminal maturation and turnover of the cartilage matrix.
13 nterfere with the structural assembly of the cartilage matrix.
14 e is complete and homogenous pigmentation of cartilage matrix.
15 rther enhanced by removing aggrecan from the cartilage matrix.
16 nd respond to environment in the surrounding cartilage matrix.
17 y is associated with damage to the articular cartilage matrix.
18 mol/L, indicating proteoglycan loss from the cartilage matrix.
21 between the molecular charges present in the cartilage matrix and an ionic contrast agent, resulting
22 the deep zone of all OA specimens, where the cartilage matrix and chondrocyte morphology appeared nor
23 accompanied by loss of Alcian blue-staining cartilage matrix and downregulation of cartilage-specifi
24 enic cells which exhibit loss of Alcian blue cartilage matrix and downregulation of cartilage-specifi
25 es are distinct in producing lower levels of cartilage matrix and not being replaced by bone, yet how
26 in total proteoglycan content accumulated in cartilage matrix, and in the ability of chondrocytes to
27 ascular endothelium invades the hypertrophic cartilage matrix, and osteoblasts differentiate and begi
28 and overall concentration of the CPA in the cartilage matrix, and the shrinkage and stress-strain in
29 These Irx factors suppress the production of cartilage matrix at the joint in part by preventing the
32 gic scoring), and integrity of the articular cartilage matrix (by retention of toluidine blue stain)
33 gent relationships of 3 NTPPPH isozymes with cartilage matrix calcification and sought to identify th
35 ccurrence of type I collagen in concert with cartilage matrix calcification suggests that the protein
40 ken to investigate whether activin A affects cartilage matrix catabolism and how its production is re
43 mapping has been shown to be associated with cartilage matrix composition (hydration, collagen conten
48 artilage-specific molecules and results in a cartilage matrix deficient in required structural compon
49 uble IL-1 receptor had significantly reduced cartilage matrix degradation and white blood cell infilt
50 EGFR signaling is an important regulator of cartilage matrix degradation during SOC formation and ep
51 GAL to protect MMP-9 activity is relevant to cartilage matrix degradation in OA and may represent an
54 f vIL-10 significantly reduced leukocytosis, cartilage matrix degradation, and levels of endogenous r
56 n a specific elevation of the release of the cartilage matrix-degrading enzyme MMP-3 (stromelysin 1).
57 xosaminidase, represent a distinct subset of cartilage matrix-degrading enzymes that are activated by
58 hat joint swelling, synovial thickening, and cartilage matrix depletion induced by the injection of a
61 ant signaling component of cytokine-mediated cartilage matrix destruction in articular chondrocytes,
65 by further compromising the integrity of the cartilage matrix during degenerative joint diseases such
66 gest that excessive release of bFGF from the cartilage matrix during injury, with loading, or in arth
67 ticipate in the invasion of the hypertrophic cartilage matrix, followed by endothelial cells derived
70 supports cartilage homeostasis by protecting cartilage matrix from inflammation-induced degradation.
73 d in collagen sponges are induced to express cartilage matrix genes after 7 days' culture with demine
74 stimulated the expression of Sox9-regulated cartilage matrix genes and induced histone acetylation a
76 hypertrophic chondrocytes, and suggest that cartilage matrix has a role in chondrocyte differentiati
77 s of the metalloproteinases that degrade the cartilage matrix have been hampered by a lack of specifi
80 associated with excessive degradation of the cartilage matrix in degenerative joint diseases such as
81 activity in chondrocytes is associated with cartilage matrix inorganic pyrophosphate (PPi) supersatu
83 s and chemokines suggests that damage to the cartilage matrix is capable of inducing a proinflammator
84 ulation of excess inorganic pyrophosphate in cartilage matrix leads to calcium pyrophosphate dihydrat
86 rtilage explants with HA(oligos) resulted in cartilage matrix loss with increased secreted caseinolyt
88 mooth muscle marker calponin 1, decreases in cartilage matrix markers, and alterations in cell signal
89 r (bFGF) during loading and/or injury of the cartilage matrix may contribute to the onset or progress
90 ates chondrocytes in vitro to synthesize new cartilage matrix, measured by enhanced uptake of 35S-sul
94 tomes is conserved through the activation of cartilage matrix molecules and suggest that a collagenou
96 o) and T2 enable detection of changes in the cartilage matrix of ACL-reconstructed knees as early as
100 an immature state, with the lower levels of cartilage matrix produced by these immature cells contri
101 fish Irx7 and mouse IRX1 are able to repress cartilage matrix production in a murine chondrogenic cel
102 action that directly links ROCK to increased cartilage matrix production via activation of SOX9 in re
108 ce linking chondrocyte lipid peroxidation to cartilage matrix protein (collagen) oxidation and degrad
109 th type II collagen becoming the predominant cartilage matrix protein after the divergence of jawless
110 wo genes assigned to 1p34-p35 were excluded: cartilage matrix protein and avian myelocytosis viral on
117 equence shows similar domain organization to cartilage matrix protein/matrilin-1, but information on
118 The levels of messenger RNA (mRNA) encoding cartilage matrix proteins and interleukin-1beta (IL-1bet
119 ades interstitial collagens as well as other cartilage matrix proteins and TGF beta1, may signify a s
121 dergo myogenesis can be converted to express cartilage matrix proteins in vitro when cultured in chon
122 otides and calcium, include cross-linking of cartilage matrix proteins, binding of fibronectin, and h
123 at the expression of Cd-rap, like many other cartilage matrix proteins, is repressed by interleukin 1
124 duction of collagen II, and eventually other cartilage matrix proteins, leading to major skeletal ano
125 -6 and were assessed for breakdown of tibial cartilage matrix proteoglycan (aggrecan) and type II col
126 entrations, almost complete normalization of cartilage matrix proteoglycan turnover was achieved.
129 There were continuous increases in mRNAs for cartilage matrix (proteoglycans and COL2, -9, -10, and -
130 ighly sulfated glycosaminoglycans within the cartilage matrix provide structural rigidity to the tiss
131 data provide evidence that ANGPTL4 promotes cartilage matrix remodeling by inhibiting expression of
133 ne the role of cell-associated hyaluronan in cartilage matrix retention, human articular chondrocytes
134 meric matrix protein (COMP) is essential for cartilage matrix stability, as mutations in Col9a1, Col9
136 s primarily via diffusion or convection, and cartilage matrix structure and composition may affect di
137 fically, Smad3 maintains the balance between cartilage matrix synthesis and degradation by inducing t
140 much is understood about how SOX9 regulates cartilage matrix synthesis and hence joint function, how
141 phatidylinositol 3-kinase-Akt and MEK-ERK in cartilage matrix synthesis and suggest that elevated lev
142 over the mechanism by which hypoxia enhances cartilage matrix synthesis by human articular chondrocyt
143 in-like growth factor I (IGF-I) to stimulate cartilage matrix synthesis is reduced in aged and osteoa
144 e a novel mechanism whereby hypoxia promotes cartilage matrix synthesis specifically through HIF-2alp
146 duced DIAS cells produced greater amounts of cartilage matrix than constructs from the rest of the de
147 aggrecan is an important major component of cartilage matrix that gives articular cartilage the abil
149 method for stimulating the repair of damaged cartilage matrix, there is evidence that with aging and/
150 y which synovial cells induce degradation of cartilage matrix through SDF-1 signaling in RA and OA.
151 rom mineralized type II/type X collagen-rich cartilage matrix to type I collagen-rich bone matrix.
154 d for their ability to degrade reconstituted cartilage matrix using a well-characterized cartilage in
155 chondrocyte, the cell type that synthesizes cartilage matrix, was central to the evolution of the ve
157 oteoglycan aggrecan, a main component of the cartilage matrix, were associated with idiopathic short
158 osteopontin, and by expansion of mineralized cartilage matrix, which is characteristic of terminal hy
159 us-induced arthritis, acting to preserve the cartilage matrix, which is damaged during alphavirus inf
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。