戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1  delay at the terminal stage of cytokinesis (cell separation).
2 c kinase that acts as a spatial inhibitor of cell separation.
3  cytoplasmic compartmentalization and (viii) cell separation.
4 ced by the divisome must be split to promote cell separation.
5 sion of the outer membrane (OM) and daughter cell separation.
6 e four genes produces only a modest delay in cell separation.
7 he cleavage of connective septal PG to allow cell separation.
8  trafficking of cargo molecules required for cell separation.
9 of LytF that is necessary and sufficient for cell separation.
10 lysis of septal peptidoglycan, which enables cell separation.
11 equired for septal PG splitting and daughter cell separation.
12 -regulated genes involved in mother-daughter cell separation.
13 s that function in cell wall remodelling and cell separation.
14 murein amidases, AmiD did not participate in cell separation.
15 with the major peptidoglycan amidases during cell separation.
16 t caps is induced in correlation with border cell separation.
17  cytokinesis, including septum formation and cell separation.
18 ter cell-specific transcription required for cell separation.
19 cts and disassembles, resulting in delays in cell separation.
20  resolve membrane connections to bring about cell separation.
21 gions that act in concert to ensure complete cell separation.
22 low outer membrane constriction and daughter cell separation.
23 tereotypical manner, which leads to daughter cell separation.
24  to the target cell, thus allowing effective cell separation.
25 e abnormal thick septa leading to defects in cell separation.
26 utants, mid2delta mutants had delays in cell-cell separation.
27 Skp1 homologue and the F-box protein Pof6 in cell separation.
28 rm the cleavage furrow and complete daughter cell separation.
29 ntly to support transcription and facilitate cell separation.
30 ibility to the L domain and subsequent virus-cell separation.
31 lar bud site selection in diploid cells, and cell separation.
32 EN gene MOB1 is required for cytokinesis and cell separation.
33 her and daughter cells after cytokinesis and cell separation.
34 used additional constrictions and a delay in cell separation.
35 the bud neck in late anaphase, just prior to cell separation.
36 ing pathways to regulate cell morphology and cell separation.
37 ce, spindle formation, nuclear division, and cell separation.
38 f1p splits into two rings, disappearing upon cell separation.
39 and septum synthesis and disappears prior to cell separation.
40        It took as little as 5 min to achieve cell separation.
41 sion and also a defect in cytokinesis and/or cell separation.
42 TGFbeta2 antibody inhibited endothelial cell-cell separation.
43 le revealed that Pob1p is also essential for cell separation.
44 fect is in cytokinesis, septum formation, or cell separation.
45  the cell surface and inhibition of daughter cell separation.
46 f secretion to the bud neck is necessary for cell separation.
47 roper execution of cytokinesis and efficient cell separation.
48 is utilized to achieve the DEP-based on-chip cell separation.
49 ed in the floral abscission zone just before cell separation.
50 ntify the impact of the micromagnets on rare cell separation.
51 pathways to regulate septum formation and/or cell separation.
52 tin rings on mother and daughter cells after cell separation.
53 rphase through to the contractile ring until cell separation.
54 nd vesicle trafficking in the later steps of cell separation.
55 ed in cell cycle control and mother-daughter cell separation.
56 by target enzymes called amidases to promote cell separation.
57 in, suggesting they are limiting factors for cell separation.
58 n assembly required for septum synthesis and cell separation.
59 al forces of the cell turgor pressure during cell separation.
60 luding cell expansion, organ initiation, and cell separation.
61 nctions of alpha(1-3)glucan in septation and cell separation.
62 ign and operation of size-based microfluidic cell separation.
63 plications such as regenerative medicine and cell separation.
64 ther with synthases, for growth and daughter cell separation.
65 esions with enhanced migration and transient cell separation.
66  enzymes called "amidases" to drive daughter-cell separation.
67 cruit EnvC to the septum but fail to promote cell separation.
68 luidic channel was developed for high-purity cell separations.
69 aling occurs for those cells at smaller cell-cell separations.
70 gene receptor cells (U87EGFRvIII) at varying cell separations.
71 rmed multicellular clumps through incomplete cell separation, 10 increased invertase expression, none
72 ings appear to be involved primarily in cell-cell separation, a late stage in cytokinesis.
73 nt skin disorder characterized by suprabasal cell separation (acantholysis) of the epidermis.
74                                         Upon cell separation after cytokinesis, the new cell ends ado
75                                 Conventional cell separation against multiple markers generally requi
76 l wall hydrolases (amidases) responsible for cell separation (AmiA, AmiB and AmiC).
77 -acetylmuramyl-l-alanine amidase involved in cell separation (AmiC), as compared with three largely r
78 y, and we provided the first evidence that a cell separation amidase can utilize a small synthetic PG
79 results thus suggest that the order in which cell separation amidases and their activators localize t
80 C), as compared with three largely redundant cell separation amidases found in Escherichia coli (AmiA
81 her than the zinc cofactor typically used by cell separation amidases, potentially protecting its abi
82 r to further analyze the process of root cap cell separation and a root cap specific promoter for tar
83 shortly after it is made to promote daughter cell separation and allow outer membrane constriction to
84 ssion by LexA-Sin3 and also cause defects in cell separation and altered colony morphology.
85  N. gonorrhoeae results in severely impaired cell separation and altered peptidoglycan (PG) fragment
86 l-length AtlA protein did not restore normal cell separation and biofilm formation.
87 l-wall processing during the growth and cell-cell separation and designated the gene as cell-division
88                                        Plant cell separation and expansion require pectin degradation
89 f using microelectronic chip arrays for both cell separation and gene expression profiling provides a
90 ing root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells.
91 Five others cause frequent cell lysis during cell separation and map to two loci.
92                                              Cell separation and mixing experiments demonstrated that
93 Disruption of the spm1+ gene interferes with cell separation and morphogenesis.
94 ual motile cells in which genes for daughter cell separation and motility are ON, and chains of sessi
95 remains locked in a high SlrR state in which cell separation and motility genes are OFF for extended
96 tic switch for controlling genes involved in cell separation and motility.
97 ins binds to and represses genes involved in cell separation and motility.
98 induction by auxin is required to coordinate cell separation and organ emergence.
99 tial, this activity is critical for daughter cell separation and outer membrane invagination during d
100 cell wall constituents that are critical for cell separation and pathogenesis.
101 hat increased AmiC activity also resulted in cell separation and PG fragment release defects, indicat
102 evealed parameters for how AmiC functions in cell separation and PG fragment release.
103  activity but is only partially required for cell separation and polarized growth.
104 hat flagella-based forces initiated daughter cell separation and provided a source for membrane tensi
105 ce of the flow-through centrifuge applied to cell separation and resuspension and to DNA purification
106  sorter, we demonstrate simultaneous on-chip cell separation and sizing with three different samples
107 his patterned thermoresponsive films enables cell separation and sorting by modulating temperature- a
108 led that Glu-229 is critical for both normal cell separation and the release of PG fragments by gonoc
109 ded cells, migrated to the bud neck prior to cell separation and then rapidly relocalized to the inci
110 r phenotypes observed were lysis, failure of cell separation and/or cytokinesis, impaired bud growth
111 n increases sigmaD-directed gene expression, cell separation, and autolysis.
112   Both ace2Delta and ace2-35 show defects in cell separation, and both can rescue the growth defects
113 logue Cbk1, which controls polarized growth, cell separation, and cell integrity.
114 ime- dependent destruction of actin bundles, cell separation, and cell loss.
115 tip, relocates to the mother-bud neck before cell separation, and finally migrates to the incipient b
116      CD34(+) cells were isolated by magnetic cell separation, and high-density oligonucleotide microa
117 ork are required for cellular morphogenesis, cell separation, and maintenance of cell integrity.
118  of settings such as thrombosis, immunology, cell separations, and diagnostics.
119        While cell purity was >95% using both cell separation approaches, gene expression analysis rev
120 hanisms of apple cortex textural changes and cell separation are discussed.
121 nd that the periplasmic amidases that aid in cell separation are minor players, cleaving only one-six
122 ive in DNA segregation and the completion of cell separation, are motile and still fail to localize D
123 n and chain formation, a hallmark of progeny cell separation arrest.
124 uggest that YneA is able to inhibit daughter cell separation as well as septum formation.
125  on events associated with the completion of cell separation as well as the gain of motility.
126    Inactivation of sceD resulted in impaired cell separation, as shown by light microscopy, and "clum
127 er describes central events of budding yeast cell separation, as well as the control pathways that in
128                                     In vitro cell separation assays show that structural proteins, pe
129 motility and decreased dynamics of transient cell separations associated with cleft formation; inner
130 the mutant cells became apparent by impaired cell separation at the end of cell division and by resis
131      Our data suggest the great potential of cell separation based on conductivity-induced DEP using
132 with the use of techniques for magnetic bead cell separation based on expression of these 3 markers.
133                                              Cell separation based on microfluidic affinity chromatog
134 tal analysis by magnetophoresis and magnetic cell separation based upon differences in intracellular
135  (AtlA) was recently shown to be involved in cell separation, biofilm formation, and autolysis.
136 lta cells reveals that Ace2p is required for cell separation but not for polarized growth.
137 aughter-specific gene products contribute to cell separation by degrading the cell wall.
138 serial thin-section electron microscopy, and cell separation by protoplasting.
139  (L) budding domains mediate efficient virus-cell separation by recruiting host ESCRT and ESCRT-assoc
140 oteins with LytM domains also participate in cell separation by stimulating amidase activity.
141 ynthesis or remodeling, which in turn affect cell separation, cell envelope integrity, and vibrioid m
142 lished that ethylene and auxin contribute to cell separation control.
143 , the normal mechanisms of yeast budding and cell separation create permanent scars which expose suff
144 o1p deficiency in yeast (myo1Delta) causes a cell separation defect characterized by the formation of
145             This latter phenotype leads to a cell separation defect in ndc10-1 cells.
146 or the essential pof6 gene display a similar cell separation defect noted in skp1 mutants, and Pof6 l
147 lay disorganized, diffuse septin rings and a cell separation defect similar to septin deletion strain
148          In addition, we observe an enhanced cell-separation defect in a myo1spa2 strain at 37 degree
149 more, the phosphomimic mutation can suppress cell separation defects of hgc1.
150 escue the lysis but not the cell polarity or cell separation defects of ramDelta cells.
151 inactivation of Mcs6 in csk1(+) cells causes cell separation defects or growth arrest, respectively,
152 ble mutant showed no growth abnormalities or cell separation defects, suggesting that these enzymes a
153  deleted or overexpressed have septation and cell separation defects.
154 emonstrate the efficiency of marker-specific cell separation, DEP-activated cell sorting (DACS) was a
155 rmodynamics-derived approach we analyzed the cell-separation dependence of the signaling stability, a
156 ular, cell-cell signaling can depend on cell-cell separation distance and can influence cellular arra
157 ese trajectories to identify a range of cell-cell separation distances where the signaling was most s
158 enerates a special and unique side-explosive cell separation due to an instantaneous primary septum t
159 m-positive cell wall at the site of daughter cell separation during cell division.
160 ibutes to cell wall disassembly occurring in cell separation during fruit abscission, but its role, i
161 ggests a new mechanism for the regulation of cell separation during the M/G(1) phase transition.
162 found to play crucial roles in P. aeruginosa cell separation, envelope integrity and antibiotic resis
163 l organs abscise after pollination, and this cell separation event is controlled by the peptide INFLO
164 ase is an important but poorly characterized cell separation event.
165  degradation of pectins is required for many cell separation events in plants, but the role of pectin
166                                              Cell separation experiments revealed that the nonparench
167                                              Cell separation experiments suggest that IL-10 can effec
168 lts will enable design of practical particle/cell separation, filtration, and focusing systems for cr
169 ndent pathway that is required for efficient cell separation following cytokinesis.
170 by electron microscopy indicated a defect in cell separation following mitosis.
171 ring constriction, septation, and subsequent cell separation following ring disassembly.
172 nt passive marker in label-free particle and cell separation for chemical, biomedical, and environmen
173 cribe a modified protocol for immunomagnetic cell separation for efficient isolation of human periphe
174                              In the realm of cell separation for screening, there has been significan
175 umber of attributes that can be utilized for cell separation, for example, cell shape, cytoskeletal p
176 evaluate the efficacy of immunomagnetic rare cell separation from non-Newtonian particulate blood flo
177 om an endothelial cell surface layer and red cell separation from the endothelial cell surface were m
178 aromyces cerevisiae prevents mother-daughter cell separation, generating multicellular 'snowflake' ye
179                  Importantly, application of cell separation, genome-wide expression, and cell-specif
180 re is a sense that the field of microfluidic cell separation has achieved a high level of maturity ov
181                                     Magnetic cell separation has become a popular technique to enrich
182 hnological work associated with microfluidic cell separation has been driven by needs in clinical dia
183                               Immunomagnetic cell separation has been shown to be a highly attractive
184                                 The reported cell separation has the potential to impact the forensic
185  morphogenetic abnormalities and a defect in cell separation; however, remarkably, cytokinesis appear
186 mpartments) occurring 18 min before daughter cell separation in a 135-min cell cycle so the two const
187 mising applications of the DEP separator for cell separation in a continuous mode.
188 g furrow ingression, membrane resolution and cell separation in budding yeast.
189                Though initially designed for cell separation in DNA sequencing protocols, the flow-th
190 reakage in Kanzi apples and, in contrast, by cell separation in Golden Delicious apples.
191 his allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like
192 , both spatially and temporally, with border cell separation in pea root caps.
193 w O(2) inhibited root development and border cell separation in pea seedlings.
194                 Thus, the ultrafast daughter cell separation in S. aureus appears to be driven by acc
195  and divide adjacent to the previous site of cell separation, in response to a cell-division remnant,
196 hree dimensions, resulting, after incomplete cell separation, in the 'bunch of grapes' cluster organi
197 ge cross section, together with differential cell separation, indicate the presence of europium parti
198                                      Impeded cell separation is accompanied by abnormalities in myosi
199  or multinucleate phenotype, indicating that cell separation is also inhibited.
200                             For lymphocytes, cell separation is best achieved by fluorescence activat
201                          Swift and efficient cell separation is difficult and a major hurdle for isot
202                                              Cell separation is mediated by autolysins, whose genes a
203 r results therefore support a model in which cell separation is stimulated by the reversible relief o
204             One important aspect of magnetic cell separation is the degree to which a cell binds para
205 ct chitin synthase that acts during or after cell separation, is transported normally in chs6 mutants
206 anges in ethylene sensitivity, including the cell separation layer throughout tomato flower abscissio
207 ession of this murein hydrolase activity and cell separation levels to those of the wild-type strain.
208 In this work, we report a scaled, label-free cell separation mechanism called non-equilibrium inertia
209                     We previously reported a cell separation method that uses the fluorescence-activa
210       The study presents a dielectrophoretic cell separation method via three-dimensional (3D) nonuni
211                                          The cell separation method we employed has, as its final ste
212 s an efficient, high-throughput microfluidic cell separation method.
213   We present a dielectrophoresis (DEP)-based cell-separation method, using 3D electrodes on a low-cos
214            Current affinity-based protein or cell separation methods use binary 'bind-elute' separati
215                                In model 2, a cell separation model, the mRNA levels of these inflamma
216 genes overlapped significantly with those of cell separation mutants sep10 and sep15.
217                                   Currently, cell separation occurs almost exclusively by density gra
218 ng 4 (VPS4) follows CHMP4B to this site, and cell separation occurs immediately.
219 RP is crucial to ensure that auxin-regulated cell separation occurs solely along their shared walls.
220  proteins with specific functions to support cell separation of vegetative bacilli and growth in infe
221 od for extraction of NAD(P)(H) from cultured cells, separation of analytes by capillary electrophores
222 tance of considering the potential effect of cell separation on gene expression as well as DNA methyl
223                                    Following cell separation on the microdevice, DNA extraction, ampl
224 equired for motility but not at the level of cell separation or flagellum biosynthesis.
225   It can be scaled up for routine laboratory cell separation or implemented on a miniaturized scale.
226                During filamentous growth, no cell separation or subsequent beta-glucan exposure occur
227                                              Cell separation, or abscission, is a highly specialized
228 centus are highly pinched at multiple sites (cell separation phenotype) and they do not divide to pro
229 ackground and causes slow-growth and delayed-cell-separation phenotypes in the S288C strain backgroun
230 onally designed microfluidic magnetophoretic cell separation platform capable of throughputs of 240 m
231                         In this microfluidic cell separation platform, flexible cells with high defor
232                                           In cell separations, positive selection (capture of the tar
233  within analytical chemistry and proteomics, cell separations predominantly rely upon the second, lab
234 ) was applied to several clinically relevant cell separation problems, including the purging of human
235 oteins was found to be released while border cell separation proceeds.
236 IKE2 (HSL2), have been shown to activate the cell separation process that leads to organ abscission.
237  be selectively digested during the critical cell separation process.
238 ntional laboratory methods, showing that the cell separation product in the outlet reservoir was of m
239 he mother-bud neck, and septum formation and cell separation rapidly ensue.
240 cyte growth factor (HGF) induces endothelial cell separation, regulates expression of cell adhesion m
241  involved in pheromone response and daughter cell separation, respectively.
242 e transcriptase polymerase chain reaction of cell separations showed that the increased production of
243                             The demonstrated cell separation shows promising applications of the DEP
244 nd hypothesize that CST negatively regulates cell separation signaling directly and indirectly.
245        We conclude that elements of the same cell separation signaling module have been adapted to fu
246 the orchestration of events during the final cell separation step of cell division called abscission.
247 region of Gag that is critical for the virus-cell separation step) is involved in controlling particl
248                                 In addition, cell separation studies and flow cytometric analyses rev
249                                              Cell separation studies showed that bright gp70(+) cells
250                                              Cell separation studies showed that the increased argina
251                                              Cell separation studies showed that the unresponsiveness
252 tunately, many current selection methods for cell separation, such as magnetic activated cell sorting
253 odeoxynucleotides prevented endothelial cell-cell separation, suggesting that Slug acts early in the
254 t was prepared using the Isolex 300 Magnetic Cell Separation System (Baxter Immunotherapy, Irvine, CA
255 ortant role in such a sedimentation-involved cell separation system.
256 oretic field-flow-fractionation (DEP-FFF), a cell-separation technique that exploits the differences
257                                    Utilizing cell separation techniques, it was determined that the w
258                                     Physical cell separation techniques, such as cell sorting and las
259                         For analysis of rare cell separation, the local viscosity distribution is cal
260          Although Gef3p is not essential for cell separation, the simultaneous disruption of gef3(+)
261 , including two genes required for efficient cell separation: the chitinase-encoding gene CTS1 and th
262  cytokinesis, and also functions to maintain cell separation through much of the subsequent interphas
263 a wide range of applications including blood cell separation, ultrasound contrast agent preparation,
264          This quadruple mutant is delayed at cell separation upon release from mitotic arrest.
265 )-cross-linked pectic polymers and extensive cell separation upon tissue disruption.
266                                              Cell separation using dielectrophoresis as well as elect
267 iched preparations were isolated by magnetic cell separation using the FDC-restricted monoclonal anti
268  controls transcription of genes involved in cell separation, we show that disruption of some of thes
269 ces between individual cell types, efficient cell separations were achieved by dielectrophoresis on t
270                                              Cell separations were achieved in a thin chamber equippe
271 RNA-binding protein Scw1 and severely delays cell separation when combined either with a septin mutat
272  ease of fabrication and use is suitable for cell separations when subsequent analysis of target cell
273   TGFbeta2 mediates initial endothelial cell-cell separation while TGFbeta3 is required for the cell
274                       art1 cells lyse during cell separation with a thinner and defective septum.
275      Thus, we propose that Cdc14 coordinates cell separation with mitotic exit via FEAR-initiated pho
276  circulating tumor cells, and for label-free cell separation with potential applications in biologica
277                    Organ detachment requires cell separation within abscission zones (AZs).
278 tion of Neisseria gonorrhoeae ltgC inhibited cell separation without affecting peptidoglycan monomer
279 me atmospheric composition stimulated border cell separation without significantly influencing root g

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top