コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 e could regenerate rod pigment but not green cone pigment.
2 s correlated with abnormal distribution of a cone pigment.
3 10 weeks and reversed the mislocalization of cone pigment.
4 hes activating more than approximately 1% of cone pigment.
5 icant increases in mRNA levels for the green cone pigment.
6 e opsin shift between rhodopsin and the blue cone pigment.
7 Nrl(-/-) mice are conelike and contain only cone pigments.
8 is-retinal, the chromophore of rhodopsin and cone pigments.
9 11-cis-retinal chromophore of rhodopsin and cone pigments.
10 lengths are the lambda(max) of the two mouse cone pigments.
11 this methyl group in the salamander rod and cone pigments.
12 the extent of phosphorylation of unbleached cone pigments.
13 11-cis-retinal chromophore of rhodopsin and cone pigments.
14 l shift between the mouse UV and bovine blue cone pigments.
15 ajor role in the spectral tuning of the SWS1 cone pigments.
16 dulation in avian short-wavelength sensitive cone pigments.
17 iously affecting the operation of the native cone pigments.
18 uts primarily from cones with mixed M- and S-cone pigments.
19 arhodopsin II formation and decay in rod and cone pigments.
20 sms during the evolution of rodent long-wave cone pigments.
21 gment) and a second near 510 nm [midwave (M)-cone pigment].
22 hosphodiesterase inhibitory subunit gamma to cone pigment, 1:68, was similar to the levels observed f
23 The single substitution in the dolphin LWS cone pigment (292S to 292A) causes a red shift from the
27 f the meta-II state (active conformation) of cone pigment and its higher rate of spontaneous isomeriz
28 results in comparing thermal stability of UV cone pigment and rhodopsin provide insight into molecula
29 (-/-) double knock-out model, trafficking of cone pigments and membrane-associated cone phototransduc
31 tionship between the properties of mammalian cone pigments and those of mammalian cones is not well u
32 e photopigments, one peaking near 350 nm (UV-cone pigment) and a second near 510 nm [midwave (M)-cone
33 which recognizes chicken rhodopsin and green cone pigment, and by reverse transcription-polymerase ch
34 retching frequencies of rhodopsin, the green cone pigment, and the red cone pigment in H2O (D2O) are
35 dopsin numbering) of the tiger salamander UV cone pigment appears to be trapped in an open conformati
37 te is not a universal attribute of long-wave cone pigments as generally supposed, and that, depending
39 igment belongs to the long-wave subfamily of cone pigments, but its absorption maximum is 508 nm, sim
41 rt-wave cone opsin (S-opsin) to test whether cone pigment can substitute for the structural and funct
43 Nrl(-/-) photoreceptors express the mouse UV cone pigment, cone transducin, and cone arrestin in amou
47 the initial rapid regeneration of mouse M/L-cone pigment during dark adaptation, whereas the slower
48 wn that rod arrestin can bind and deactivate cone pigments efficiently, the results suggest that cone
49 type-specific expression of the zebrafish UV cone pigment gene by transient expression of green fluor
52 spontaneous isomerization activity of human cone pigments has long remained a mystery because the ef
53 Differences in properties between rod and cone pigments have been described, such as a 10-fold sho
54 n spectra of recombinant human green and red cone pigments have been obtained to examine the molecula
55 rity of mammalian short-wavelength sensitive cone pigments have shifted their absorption maxima from
56 iff base (SB) linkage, but only UV-sensitive cone pigments have this moiety unprotonated in the dark.
57 odopsin, the green cone pigment, and the red cone pigment in H2O (D2O) are found at 1656 (1623), 1640
58 estion by expressing human or salamander red cone pigment in Xenopus rods, and human rod pigment in X
64 mographic spectral analysis of 294 A1 and A2 cone pigment literature absorption maxima indicates that
66 cis retinal in solution, suggesting that the cone pigment noise results from isomerization of the ret
67 embrane domain were observed in the X-linked cone pigment of bush babies but not in other primates.
71 demonstrating the interplay between rod and cone pigment regeneration driven by the retinal pigment
72 designed to keep up with the high demand for cone pigment regeneration in bright light and to preclud
73 used transretinal recordings to evaluate M/L-cone pigment regeneration in isolated retinas and eyecup
74 to underlie the Rpe65-/- phenotype, although cone pigment regeneration may be dependent on a separate
76 slowing of foveal visual acuity recovery and cone pigment regeneration, which are related to each oth
82 sin is 10(4)-fold lower than that of rod and cone pigments, resulting in a very low photon catch and
83 n of rhodopsin numbering) in the dolphin LWS cone pigment results in a blue shift in absorption maxim
84 ssociation, apparently a general property of cone pigments, results in a surprisingly large amount of
85 l and signaling properties of the short-wave cone pigment (S-pigment) contribute to the specialized f
86 uires neither the short-wavelength-sensitive cone pigment [S-pigment or cone opsin (OPN1SW)] nor ence
87 he first transgenic model expressed a murine cone pigment, S-opsin, together with the endogenous rhod
88 ven cone pigments indicate that the deep red cone pigments select 6- s- trans chromophore conformatio
89 e theoretically the hypothesis that deep red cone pigments select a 6- s- trans conformation of the r
92 ied 12 amino acid residues in the human blue cone pigment that might induce the required green-to-blu
94 catfish orthologues of rhodopsin and the red cone pigment-the full complement of retinal opsins in th
95 tants of Siberian hamster ultraviolet (SHUV) cone pigment to explore structural rearrangements that s
96 ing the measured quantal noise of transgenic cone pigment to native human red cones, we obtained a da
97 uction, starting distally, but rhodopsin and cone pigments trafficked normally for more than 2 weeks,
99 vercome this problem by expressing human red cone pigment transgenically in mouse rods in order to ex
100 of retinal from a short-wavelength-sensitive cone pigment (VCOP) in 0.1% dodecyl maltoside using fluo
105 esponding control cultures regarding the red cone pigment, which was expressed in all cases, and the
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。