コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 n, 2 common target genes involved in radical dismutation.
2 -aerobic respiration and fermentative malate dismutation.
3 for the electrostatic facilitation of O(2)() dismutation.
4 atic contribution to the catalysis of O(2)() dismutation.
5 to O(-.2), which generated H(2)O(2) through dismutation.
6 bition of Y34F during the catalysis of O-(2) dismutation.
7 hemoglobin autoxidation because of its rapid dismutation.
8 g-lived mutants in C. elegans utilize malate dismutation, a byproduct of which is the generation of f
9 activity of MbFeIII, thus facilitating H2O2 dismutation accompanied by O2 evolution and providing pr
12 free radical-generating activity, while its dismutation activity is identical to that of the wild-ty
16 le exhibited only 0.02% of the original H2O2-dismutation activity when assayed in the presence of 20
22 necessary for maximal activity in superoxide dismutation, appears to have no role in stabilization an
25 pothesized this was enabled through chlorite dismutation by the community, as most strains in the Bar
26 ase in the catalysis by Mn-SOD of superoxide dismutation can be reached through both the forward (O-(
27 d rates of intracellular O2- production, O2- dismutation, dehydratase inactivation, and enzyme repair
29 ratios of enzyme to superoxide radical, the dismutation efficiencies scaled as Drad MnSOD > E. coli
30 erified the beneficial effects of superoxide dismutation in cells, we then evaluated the effects usin
33 mal hydrogen electrode, whereas the rates of dismutation (kcat) are 6.0 x 10(7), 4.1 x 10(6), and 3.8
34 e chloride channel(s) and that SOD1-mediated dismutation of *O(2)(-) at the endosomal surface may pro
36 etry results, Cld is highly specific for the dismutation of chlorite to chloride and dioxygen with no
37 homogeneous electron distribution due to the dismutation of formal oxidation numbers as compared with
39 yme superoxide dismutase (SOD) catalyzes the dismutation of highly reactive O2 (-) into H2O2 and thus
40 oxidase-specific substrate, and catalase for dismutation of hydrogen peroxide generated in the enzyme
41 r manganese cluster that catalyzes the redox dismutation of hydrogen peroxide, interconverting betwee
44 he formation of .OH adducts from spontaneous dismutation of O-2 and concomitant reaction with H2O2.
47 l of cellular superoxide anion (O2-.) is the dismutation of O2-. to hydrogen peroxide by the enzyme s
48 ndrial function (attenuated capacity for the dismutation of reactive oxygen species) and diminished i
50 the enhancing capacity of Cu/Zn-SOD, and the dismutation of superoxide anion radicals generated from
51 ine of antioxidant defense by catalyzing the dismutation of superoxide anion radicals to form hydroge
52 se A (sodA, bb0153), an enzyme mediating the dismutation of superoxide anions and examined the in vit
53 their enzymic activities for catalyzing the dismutation of superoxide anions and the generation of f
55 anion accelerates this reaction because the dismutation of superoxide leads to increased levels of h
56 t to the accepted mechanism of SOD catalysed dismutation of superoxide operates, with Cu(I) oxidation
57 Superoxide dismutases (SODs) catalyze the dismutation of superoxide radicals in a broad range of o
59 , an enzyme that induces the rapid catalytic dismutation of superoxide to the less reactive H(2)O(2)
60 entadecane (MnBAM) effectively catalyzed the dismutation of superoxide with catalytic rate constants
61 which were caused by proton consumption upon dismutation of superoxide, followed by activation of a v
62 oxide radical and the H2O2 produced from the dismutation of superoxide, respectively, and thus preven
63 In a concerted effort, SOD will catalyze the dismutation of superoxide, resulting in the elimination
64 nd Fe(II) ions are capable of catalyzing the dismutation of superoxide, solutions of Ni(II) are not.
68 ion markTrx-SOD is capable of catalyzing the dismutation of the superoxide anion; comparative studies
69 xide dismutase ( SOD1 ), which catalyses the dismutation of the superoxide radical to hydrogen peroxi
70 eroxide dismutase (SOD), which catalyzes the dismutation of the superoxide radical, is present in the
72 ric metal-binding enzyme responsible for the dismutation of toxic superoxide to hydrogen peroxide and
74 nt formation of superoxide (O2 (.-)) and its dismutation product hydrogen peroxide (H2O2) as determin
75 inverted question markTrx-SOD catalyzes the dismutation reaction at a rate on the order of 10(5) M-1
79 the structural changes that occur during the dismutation reaction of hydrochlorofluorocarbon-22 (CHCl
80 sequent kinetic measurements reveal that the dismutation reaction proceeds in two discrete steps and
81 proposed to generate singlet oxygen through dismutation reaction, resulting in a low yield of (1)O(2
82 s subsequently undergo an enzyme-independent dismutation reaction, the rate of which is decreased whe
83 6-13) than be accounted for by simple O2(-) dismutation (RH/RH2O2 = 2), implying a significant oxida
84 (2), produced as a consequence of superoxide dismutation, stimulates vascular cell proliferation and
86 , mitochondrial anion channels and cytosolic dismutation to H2O2 may be important steps for oxidant i
87 eroxide, either directly or through its self-dismutation to H2O2, is likewise believed to be a cell-s
89 (-1), suggesting that cvSOD-catalyzed O2 (-) dismutation was not a diffusion controlled encounter.
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。