戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1  to peak pressure and a dramatic increase in end diastolic pressure.
2 ased left ventricular developed pressure and end diastolic pressure.
3  fraction, and an increased left ventricular end-diastolic pressure.
4  and more rapid increase in left ventricular end-diastolic pressure.
5 y wedge pressure (PCWP) and left ventricular end-diastolic pressure.
6 nants include LA dP/dt, LA relaxation and LV end-diastolic pressure.
7 rather than physical dilation from increased end-diastolic pressure.
8  but a significantly higher left ventricular end-diastolic pressure.
9  viscoelasticity, with larger net effects on end-diastolic pressure.
10 (LV) systolic function and an increase in LV end-diastolic pressure.
11 ft ventricular relaxation and an increase in end-diastolic pressure.
12 ced fibrosis, and decreased left ventricular end-diastolic pressure.
13 l, and maximum LV dP/dt, as well as lower LV end-diastolic pressure.
14 stolic LV diameter was smaller at matched LV end-diastolic pressures.
15  suction at rest and on exercise, and higher end-diastolic pressures.
16 5 vs. 28+/-10 mmHg, P<0.001), and lowered LV end diastolic pressure (10+/-1 vs. 86+/-13 mmHg, P<0.001
17 onary artery pressure (25+/-10 mm Hg) and LV end-diastolic pressure (11+/-5 mm Hg; P<0.001 for both c
18 ), and increased transmural left ventricular end-diastolic pressure (139 +/- 6%).
19 +/- 15 mm Hg (p = 0.07) and left ventricular end-diastolic pressure 14 +/- 5 versus 16 +/- 4 mm Hg (p
20 ) mass (70 +/- 2 vs. 63 +/- 1%), enhanced LV end-diastolic pressure (14 +/- 2 vs. 8 +/- 1 mmHg) and t
21           At 60 minutes, bosentan reduced LV end-diastolic pressure (17 +/- 2 versus 11 +/- 2 mm Hg;
22  (mean pressure, 39+/-12 mm Hg), elevated LV end-diastolic pressure (19+/-5 mm Hg), and reduced strok
23 ular stiffness (110+/-26% over baseline) and end-diastolic pressure (22+/-1.7 mm Hg).
24 and diastolic function (eg, left ventricular end-diastolic pressure 23+/-9 in WT and 51+/-5 mm Hg in
25  heart failure had elevated left ventricular end-diastolic pressures (24.1 +/- 2.6 mm Hg) and a mean
26 rmalities, including higher left ventricular end-diastolic pressures (24.3+/-4.6 versus 12.9+/-5.5 mm
27 mean+/-SD: LV ejection fraction, 19+/-7%; LV end-diastolic pressure, 25+/-8 mm Hg; QRS duration, 157+
28 mpanied by global LV dysfunction (in vivo LV end-diastolic pressure, 4+/-1 versus 23+/-1.6 mm Hg; Lan
29 u(ln) and kappa(e) with the relationship: LV end-diastolic pressure=-4.73+0.27 tau(ln)+0.54 kappa(e)
30 ia-reperfusion increased left ventricle (LV) end diastolic pressure (450% vs. 33%, p < 0.01) and redu
31 versus IPC, P<.05) and contractile recovery (end-diastolic pressure, 52+/-5 versus 29+/-5 mm Hg, P<.0
32 n in NTg (53 versus 38%, P<0.01), whereas LV end-diastolic pressure (6 versus 12 mm Hg, P<0.05) and l
33 08 m/s, p < 0.0001), and elevated in vivo LV end-diastolic pressure (7 +/- 6 vs. 2 +/- 1 mm Hg, p = 0
34 onary arteries and elevated left ventricular end-diastolic pressure (7.7+/-0.3 to 19+/-3.4 mm Hg, P<.
35  better recovery than Con (%PCr, 56+/-6% and end-diastolic pressure, 72+/-6 mm Hg).
36 2 extraction 24%, and mean right ventricular end-diastolic pressure 9 mm Hg.
37                                              End diastolic pressure, a negative index of myocardial p
38 t in patients with elevated left ventricular end-diastolic pressure, a finding largely attributed to
39 locked neither the elevated left ventricular end-diastolic pressures, a measure of diastolic function
40 nary perfusion pressure and left ventricular end-diastolic pressure and a decrease in developed left
41 arcts >35% had an increased left ventricular end-diastolic pressure and a marked increase in heart we
42                                              End-diastolic pressure and chamber diastolic stiffness d
43 th 80 micromol/L diazoxide, left ventricular end-diastolic pressure and coronary flow were significan
44 ased fractional shortening, and increased LV end-diastolic pressure and fibrosis (P<0.05 versus contr
45 ary cardiospheres decreased left ventricular end-diastolic pressure and increased cardiac output.
46 iastolic function, lowering left ventricular end-diastolic pressure and increasing the filling rate.
47 nt inverse relationships to left ventricular end-diastolic pressure and infarct size.
48 F as evidenced by increased left ventricular end-diastolic pressure and left ventricular volume index
49 ved between the plasma DPPIV activity and LV end-diastolic pressure and lung congestion.
50 nduced HF, CXL-1020 reduced left ventricular end-diastolic pressure and myocardial oxygen consumption
51      Improvement in postischemic recovery of end-diastolic pressure and reduction in infarct size was
52 een beat-to-beat changes in left ventricular end-diastolic pressure and SV was used as an index of th
53 iac output and decreases in left ventricular end-diastolic pressure and systemic vascular resistance.
54 and offset the pacing-induced increase in LV end-diastolic pressure and the time constant of isovolum
55 lic dysfunction became manifest as increased end-diastolic pressure and time to 90% relaxation.
56 ncluding heart rate, peak-systolic pressure, end-diastolic pressure and volume, end-systolic pressure
57 def) myocardium, as demonstrated by elevated end-diastolic pressures and decreased percent recovery o
58 ad in Fontan, manifested by high ventricular end-diastolic pressures and pulmonary arterial wedge pre
59 ction, which subsequently led to elevated LV end-diastolic pressures and pulmonary hypertension.
60 educed LV mass, posterior wall thickness and end diastolic pressures, and increased fractional shorte
61 ssure increase at 40 mm Hg, left ventricular end-diastolic pressure, and cardiac index, was significa
62 poride, left ventricular developed pressure, end-diastolic pressure, and coronary flow were significa
63 us saturation, elevated systemic ventricular end-diastolic pressure, and elevated main pulmonary arte
64 orrelated with PH severity, left ventricular end-diastolic pressure, and left ventricular dilatation.
65 orepinephrine levels, lower left ventricular end-diastolic pressure, and lower right ventricle/body w
66  pulmonary artery pressure, left ventricular end-diastolic pressure, and lower thoracic aortic flow b
67  in systolic and mean arterial pressures, LV end-diastolic pressure, and LV end-systolic volume, as w
68               Elevation in right ventricular end-diastolic pressure appeared to predict poor vasodila
69                            Additionally, the end-diastolic pressure-area curves shifted to the left i
70                   Compliance was assessed by end-diastolic pressure-area curves.
71 -null hearts had similar cardiac outputs and end-diastolic pressures as WT or transgenic hearts.
72 urthermore, E:A=3:1 yielded 37% to 50% lower end-diastolic pressures at similar volumes (versus E:A=1
73 8 of the 63 patients; thus, 92% had elevated end-diastolic pressure (average, 24+/-8 mm Hg).
74 27 +/- 0.06 (n = 724); left ventricular (LV) end-diastolic pressure averaged 22 +/- 12 mm Hg (n = 548
75  not a function of elevated left ventricular end diastolic pressure but was associated with increased
76  .05) attenuated transmural left ventricular end-diastolic pressure by 30% to 40%, left ventricular e
77  mode) decreased transmural left ventricular end-diastolic pressure by 40% to 60% (p < .05), left ven
78 htward, decreasing cardiac output at matched end-diastolic pressure by 44%.
79  controlled delivery group (left ventricular end-diastolic pressure, cardiac index, +dP/dt, -dP/dt, a
80                 At week 8, differences in LV end-diastolic pressure, cardiac output, end-diastolic an
81 levant parameters, including RV systolic and end-diastolic pressures, cardiac output, RV size, and mo
82 ll, was proportional to the magnitude of the end-diastolic pressure change.
83 ate of relaxation and lower left ventricular end diastolic pressure compared with controls.
84 olic volume in IPAH (+7%; P < 0.05), whereas end-diastolic pressure continuously dropped.
85                                              End-diastolic pressure correlated significantly with tis
86            In those receiving metoprolol, LV end-diastolic pressure decreased (P=0.001).
87                    Although left ventricular end-diastolic pressure decreased in 45/10, it increased
88    CCPA produced improvement in postischemic end-diastolic pressure, developed pressure, and rate-pre
89                      In contrast, changes in end-diastolic pressure did induce vasodilatation that, a
90 n develop increases in left ventricular (LV) end-diastolic pressures during exercise that contribute
91  left ventricular developed pressure (LVDP), end diastolic pressure (EDP), and ATP were measured thro
92 d-diastolic volume (EDV) and Doppler-derived end-diastolic pressure (EDP) were used to derive the dia
93 w Veq, even with marked reduction of volume (end-diastolic pressure [EDP], 1 to 2 mm Hg), whereas in
94 fluid protocol based on the left ventricular end-diastolic pressure for the prevention of contrast-in
95 LV) unloading manifested by a decrease in LV end-diastolic pressure from 11.4 +/- 9.0 mm Hg to 8.8 +/
96 ere as follows: "a" wave to left ventricular end-diastolic pressure gradient 17 +/- 5 versus 4 +/- 4
97 fined by clinical signs and left ventricular end diastolic pressures &gt; 25 mm Hg.
98            All CHF rats had left ventricular end-diastolic pressure &gt;10 mm Hg, and heart weight/body
99 -1) IV) more than doubled chamber stiffness (end-diastolic pressure &gt;25 mm Hg, P<0.001), whereas stif
100 ressure into postcapillary (left ventricular end-diastolic pressure, &gt;15 mm Hg; n=269) and precapilla
101                             Left ventricular end-diastolic pressure-guided fluid administration seems
102 equently in patients in the left ventricular end-diastolic pressure-guided group (6.7% [12/178]) than
103 allocated in a 1:1 ratio to left ventricular end-diastolic pressure-guided volume expansion (n=196) o
104        Interventions were performed after LV end-diastolic pressure had increased approximately 7 mm
105 olic pressure, without associated changes in end-diastolic pressure, had no significant effect on vas
106 als demonstrated significant increases in LV end-diastolic pressure, heart and body weight, and LV ch
107 output (57%) and significant decreases in LV end-diastolic pressure, heart rate, and systemic vascula
108                               The isovolumic end-diastolic pressure, however, remained elevated throu
109 5; P=0.02) and more likely to have higher RV end-diastolic pressure (HR, 1.07; 95% CI, 1.00-1.15; P=0
110 ction of I79N hearts significantly worsened (end-diastolic pressure: I79N 20 +/- 4 mmHg versus CON 13
111 raphic measures of diastolic function and LV end-diastolic pressure improve in most patients.
112                        Left ventricular (LV) end-diastolic pressure in AAV-VEGF-B and AAV-control was
113 amlodipine improved in vivo left ventricular end-diastolic pressure in association with the normaliza
114  of increases in transmural left ventricular end-diastolic pressure in both heart conditions, and als
115 decreased tau (P<0.001) and left ventricular end-diastolic pressure in both old and young hearts.
116 m for the improvement in left ventricle (LV) end-diastolic pressure in cardiomyopathy patients treate
117          We conclude that the decrease in LV end-diastolic pressure in cardiomyopathy patients treate
118 in detecting increased left ventricular (LV) end-diastolic pressure in patients with coronary artery
119 8 mm Hg) and was similar to left ventricular end-diastolic pressure in the sham-operated rats (P = NS
120                             Left ventricular end-diastolic pressure increased significantly in the po
121 ere further dichotomized by left ventricular end-diastolic pressure into postcapillary (left ventricu
122 h HTN(+)HFpEF had increased left ventricular end-diastolic pressure, left atrial volume, N-terminal p
123 9) and precapillary groups (left ventricular end-diastolic pressure, &lt;/=15 mm Hg; n=56).
124 axation (tau), left atrial (LA) pre-A and LV end-diastolic pressures (LV-EDP) were measured.
125 tion fraction) and hemodynamic variables (LV end-diastolic pressure, LV dP/dtmax, preload adjusted ma
126 ately threefold increase in left ventricular end diastolic pressure (LVEDP) and 38% increase in the t
127         In healthy and CHF (left ventricular end diastolic pressure (LVEDP): 6 +/- 1 versus 14 +/- 1
128 ine paradoxically decreased left ventricular end-diastolic pressure (LVEDP) and left ventricular end-
129 rrest led to an increase of left ventricular end-diastolic pressure (LVEDP) by > or =20 mm Hg (ie, ca
130 und a threefold increase of left ventricular end-diastolic pressure (LVEDP) in LVH during 2DG perfusi
131 d diastolic volumes with little effect on LV end-diastolic pressure (LVEDP) or the end-diastolic P-V
132 ic blood pressure (DBP) and left ventricular end-diastolic pressure (LVEDP) to systolic blood pressur
133 y perfusion pressure (CPP), left ventricular end-diastolic pressure (LVEDP), and developed left ventr
134 10 to 20 cm H2O increased cardiac output, LV end-diastolic pressure (LVEDP), and peak LV pressure (LV
135 oronary enalaprilat reduced left ventricular end-diastolic pressure (LVEDP), but not left ventricular
136 n measurements, including cardiac output, LV end-diastolic pressure (LVEDP), rate of pressure rise at
137 ditional marker of elevated left ventricular end-diastolic pressure (LVEDP), which adds prognostic va
138 n increased DCS (isovolumic left ventricular end-diastolic pressure [LVEDP] increased 10 mm Hg, P<0.0
139                                  Ventricular end-diastolic pressure, mean PA pressure, and ventricula
140 V systolic and diastolic function, higher LV end-diastolic pressure, more cardiomyocyte hypertrophy,
141 , indicated by an increased left ventricular end diastolic pressure, myocardial creatine kinase relea
142 TN(-)HFpEF had no change in left ventricular end-diastolic pressure, myocardial passive stiffness, co
143 l performance with elevated left ventricular end-diastolic pressure, not seen in the wild-type.
144 g of early rapid filling and equalization of end-diastolic pressures obtained by cardiac catheterizat
145   No significant changes in left ventricular end-diastolic pressure occurred in response to stimulati
146 through the mitral valve and distended to an end-diastolic pressure of 10 mm Hg.
147 d LV end-diastolic volume at an idealized LV end-diastolic pressure of 20 mm Hg (EDV20), and RV remod
148  of left ventricular (LV) pacing produced LV end-diastolic pressures of 15+/-1.7 mm Hg, whereas overt
149 t CHF at 4 to 5 weeks was associated with LV end-diastolic pressures of 24+/-1.7 mm Hg; prepacing val
150 forces, the end-diastolic volume at a common end-diastolic pressure on the sequential end-diastolic p
151 e with respect to time but did not change LV end-diastolic pressure or improve LV regional function.
152 s observed among groups for left ventricular end-diastolic pressures or dimensions, or catecholamine
153  systolic pressure without an increase in LV end-diastolic pressure, or decrease in LV dP/dt or LV wa
154 tion was seen for stiffness with ventricular end-diastolic pressure (P = 0.001) and pulmonary artery
155 roved ejection fraction and left ventricular end-diastolic pressure (P<0.05).
156 tricular pressure by micromanometer provided end-diastolic pressure (P) area (A) relations during ini
157 lmonary artery systolic and left ventricular end-diastolic pressures (p < 0.01).
158 dence of diabetes, ejection fraction < 0.25, end-diastolic pressure, prior myocardial infarction, or
159 lines in blood pressure and left ventricular end-diastolic pressure produced by GTN in vivo.
160 p < 0.01) but an inverse correlation with LV end-diastolic pressure (r = -0.53, p = 0.01).
161 s inversely associated with left ventricular end-diastolic pressure (r=-0.728; P<0.001), resulting in
162 hereas SR(E) was significantly related to LV end-diastolic pressure (r=0.52, P=0.005) in the experime
163 diastolic velocity (E/E ) correlated with LV end-diastolic pressure (r=0.52, P=0.007).
164               The delay related well with LV end-diastolic pressure (r=0.76) and volume (r=-0.73), an
165 d and the heart paced until left ventricular end-diastolic pressure reached 25 mm Hg and clinical sig
166 icular dilitation, elevated left ventricular end-diastolic pressure, redo coronary surgery, depressed
167 immediate peak gradient and left ventricular end-diastolic pressure reductions were 54% and 20%, resp
168 nship but has no effect on the stroke volume/end-diastolic pressure relationship.
169 d to baseline values, whereas the isovolumic end-diastolic pressure remained elevated for 20 mins.
170 large increases in end-diastolic volume, the end-diastolic pressure remained unchanged.
171   Left ventricular (LV) function measured by end-diastolic pressure response to preload augmentation,
172 d no effect on heart rate, LV relaxation, LV end-diastolic pressure, right atrial pressure, or pulmon
173 l resection again blunted the increase in LV end-diastolic pressure secondary to volume expansion (+4
174 , diastolic relaxation, and left ventricular end-diastolic pressures stabilized in the cardiomyoplast
175 fibrosis and left atrium diameter (marker of end-diastolic pressure), suggesting an improvement in di
176 HF-related cardiac dysfunction, including LV end-diastolic pressure, systolic performance, and chambe
177 worse LV contractile function, and higher LV end-diastolic pressure than Ptges(+/+) mice after myocar
178 l approach would mitigate the increase in LV end-diastolic pressure that develops during volume loadi
179 esuscitation cardiac index, left ventricular end-diastolic pressure, the rate of left ventricular pre
180 ial relaxation and lowering left ventricular end diastolic pressure to facilitate ventricular filling
181 schemia, cardiac output decreased by 41% and end diastolic pressure tripled for CD36-null hearts, wit
182 tion fraction or stroke volume and decreased end diastolic pressure versus controls.
183 nd the "stiffness" coefficient (beta) of the end-diastolic pressure volume relation.
184 ction fraction, end-systolic volume, and the end-diastolic pressure volume relationship by Ang-(1-9)
185 c function and prompt leftward shifts of the end-diastolic pressure-volume curves.
186 ese curves deviate markedly from the passive end-diastolic pressure-volume relation (EDPVR) and explo
187  stroke work relation were measured from the end-diastolic pressure-volume relation before and during
188 sure-volume curve and a reduced slope of the end-diastolic pressure-volume relation in the myoblast-t
189            There were no changes observed in end-diastolic pressure-volume relations, but there was f
190 lic properties were quantified by use of the end-diastolic pressure-volume relationship and the time
191 ung normal dogs underwent measurement of the end-diastolic pressure-volume relationship during caval
192 action (p = 0.014) and improvement of the RV end-diastolic pressure-volume relationship in PH pigs tr
193                                       The LV end-diastolic pressure-volume relationship measured by t
194                                          The end-diastolic pressure-volume relationship slope was ele
195 ment in left ventricular chamber compliance (end-diastolic pressure-volume relationship; P<0.01) and
196     In both models, isolated, perfused heart end-diastolic pressure-volume relationships and passive
197                    Both the end-systolic and end-diastolic pressure-volume relationships shifted fart
198 mon end-diastolic pressure on the sequential end-diastolic pressure-volume relationships was measured
199 theters assessed changes in end-systolic and end-diastolic pressure-volume relationships, and microsp
200 central venous pressure nor left ventricular end diastolic pressure was altered by thapsigargin.
201                                       The LV end-diastolic pressure was >16 mm Hg in 58 of the 63 pat
202 occurring at 29+/-1.6 days, left ventricular end-diastolic pressure was 25+/-1 mm Hg, left ventricula
203                             Left ventricular end-diastolic pressure was determined.
204                                           LV end-diastolic pressure was elevated (>/=15 mm Hg) in 72%
205                     In vivo left ventricular end-diastolic pressure was higher in the untreated LVH t
206                                           LV end-diastolic pressure was increased with CIH (CIH, 13.7
207 on analysis revealed that the decrease in LV end-diastolic pressure was indicative of significant imp
208                             Left ventricular end-diastolic pressure was lower in the AT1-blocker-trea
209                                           LV end-diastolic pressure was measured by micromanometer.
210       In the treated hearts, the increase in end-diastolic pressure was significantly attenuated at t
211 -1) versus 0.05+/-0.03 after MI, P=0.06), LV end-diastolic pressure was unchanged as MR resolved.
212 (ejection fraction [EF] and left ventricular end-diastolic pressure) was assessed at days 28 and 56.
213 c pulmonary artery pressure-left ventricular end-diastolic pressure) was normal (<7 mm Hg) or elevate
214  right ventricular mass and left ventricular end diastolic pressure were increased and left ventricul
215  ventricle/body weight, and left ventricular end-diastolic pressure were increased and maximal left v
216 ht ventricle weight/body weight ratio and LV end-diastolic pressure were significantly higher in hear
217    Pulmonary capillary wedge pressure and LV end-diastolic pressure were significantly increased afte
218                             Left ventricular end-diastolic pressures were significantly elevated 4 we
219                              Postreperfusion end-diastolic pressures were significantly increased in
220 s, pericardiotomy blunted the increase in LV end-diastolic pressure with saline infusion, while enhan
221 mic measurements at 6 months showed lower LV end-diastolic pressures, with enhanced LV function (cont
222 alutary effect of this kind of therapy on LV end-diastolic pressure would be indicative of an improve

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top