戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1  E. coli and the related pathogen Salmonella enterica.
2 ections with distinct serovars of Salmonella enterica.
3 f B. mallei, Yersinia pestis, and Salmonella enterica.
4 ce in Yersinia enterocolitica and Salmonella enterica.
5 or eptA regulation in E. coli and Salmonella enterica.
6 ng B. subtilis, P. aeruginosa and Salmonella enterica.
7 of pSLT, the virulence plasmid of Salmonella enterica.
8 plit between Escherichia coli and Salmonella enterica.
9 tive species Escherichia coli and Salmonella enterica.
10 e Mg(2+) transporter gene mgtA in Salmonella enterica.
11 ntial endoribonuclease RNase E in Salmonella enterica.
12 by the metabolic stress of 2AA in Salmonella enterica.
13 d by low Mg(2+) and C18G as in pathogenic S. enterica.
14                                        In S. enterica, 2AA inactivates a number of pyridoxal 5'-phose
15        Within Salmonella enterica subspecies enterica, a single lineage exists that includes human an
16 esistance-conferring mutations in Salmonella enterica and E. coli.
17  cholerae, Citrobacter rodentium, Salmonella enterica and ETEC were capable of complementing Aar acti
18 e is rarely found outside subspecies I of S. enterica and often present in nonfunctional allelic form
19 treatment against established biofilms of S. enterica and P. aeruginosa, respectively.
20 Leptospira spp., Rickettsia spp., Salmonella enterica and Salmonella enterica serovar Typhi, and Yers
21 l utilization microcompartment of Salmonella enterica and use it to analyze the function of the micro
22 d by pathogenic Escherichia coli, Salmonella enterica, and Clostridium difficile.
23 acter fetus, Helicobacter pylori, Salmonella enterica, and Giardia lamblia were detected in sewage, a
24 g of the effects Dap has on metabolism in S. enterica, and likely other organisms, and highlight the
25 acteria such as Escherichia coli, Salmonella enterica, and Listeria innocua, on stainless steel surfa
26                        Strains of Salmonella enterica, and other organisms lacking RidA, have diverse
27 ding Corynebacterium diphtheriae, Salmonella enterica, and Vibrio cholerae, are infected with lysogen
28 ange distribution in a lineage of Salmonella enterica, and we discuss many other potential applicatio
29                                   Salmonella enterica are invasive intracellular pathogens that repli
30              Escherichia coli and Salmonella enterica are models for many experiments in molecular bi
31                      The same residues in S. enterica ArnT are also needed for function.
32 rancisella tularensis, as well as Salmonella enterica bacteria transferred from infected cells to uni
33 a-lyase (DpaL) alleviated Dap toxicity in S. enterica by catalyzing the degradation of Dap to pyruvat
34 l utilization microcompartment of Salmonella enterica can be controlled using two strategies: by modu
35 ively, our findings indicate that Salmonella enterica can promote transformation of genetically predi
36                                   Salmonella enterica catabolizes ethanolamine inside a compartment k
37                       Serovars of Salmonella enterica cause both gastrointestinal and systemic diseas
38                                   Salmonella enterica causes systemic diseases (typhoid and paratypho
39                       We also show that a S. enterica cobT strain that synthesizes GkCblS ectopically
40    MSX and MSO inhibited the growth of an S. enterica DeltamddA strain unless glutamine or methionine
41                         SpvD is a Salmonella enterica effector protein that we previously demonstrate
42 APK and AKT pathways, mediated by Salmonella enterica effectors secreted during infection, is critica
43 , we demonstrate that Dap accumulation in S. enterica elicits a proline requirement for growth and sp
44 Recent papers have shown that the Salmonella enterica FinO-domain protein ProQ binds a large suite of
45    In the Gram-negative bacterium Salmonella enterica, FlgM inhibits late-class flagellar gene expres
46                 Insertions in the Salmonella enterica fra locus, which encodes the fructose-asparagin
47 l DNA and glucuronide binding affinity to S. enterica GusR.
48  of fluoroquinolone resistance in Salmonella enterica has become increasingly difficult due to evolvi
49 biochemical studies, primarily in Salmonella enterica, have defined a role for RidA in responding to
50 t crystal structures of wild type Salmonella enterica HisA (SeHisA) in its apo-state and of mutants D
51 ith Burkholderia pseudomallei and Salmonella enterica HMBA treatment was also associated with better
52 f GusRs from Escherichia coli and Salmonella enterica in complexes with a glucuronide ligand.
53 emporal dynamics of Salmonella enterica spp. enterica in feedlot cattle.
54  in situ hybridization identified Salmonella enterica in the liver, subsequently confirmed as S. ente
55 vZ-OmpR two-component system from Salmonella enterica in vitro and in vivo, which directly contribute
56 of the selective pressures encountered by S. enterica in vivo.
57 pidemiology of diseases caused by Salmonella enterica in West Africa.
58 osphoribosyltransferases (CobT in Salmonella enterica), in a reaction that is considered to be the ca
59 rne pathogens E. coli O157:H7 and Salmonella enterica, in detail a nucleic acid lateral flow and an e
60 lla Typhi infection, we show that Salmonella enterica induces malignant transformation in predisposed
61 del to culture-confirmed cases of Salmonella enterica infections at Queen Elizabeth Central Hospital,
62  invasive infections due to non-typhoidal S. enterica infections resulted in the highest burden, caus
63 mon manifestation of nontyphoidal Salmonella enterica infections, but little is known about the patho
64 tality for invasive non-typhoidal Salmonella enterica infections, we excluded cases attributed to HIV
65                                   Salmonella enterica is a leading cause of community-acquired bloods
66                         EutT from Salmonella enterica is a member of a class of enzymes termed ATP:Co
67                                   Salmonella enterica is a ubiquitous Gram-negative intracellular bac
68                                   Salmonella enterica is among the most burdensome of foodborne disea
69                                   Salmonella enterica is one such pathogen, exploiting multiple aspec
70                                   Salmonella enterica is the leading etiologic agent of bacterial foo
71 ity to detect low-level-resistant Salmonella enterica isolates that are not serotype Typhi.
72 inolone resistance in a collection of 136 S. enterica isolates, including 111 with intermediate or re
73 niae, Mycobacterium tuberculosis, Salmonella enterica, Klebsiella pneumoniae, and Escherichia coli We
74 escein, biotin and digoxigenin coding for S. enterica, L. monocytogenes and E. coli, respectively.
75 lS proteins restore alpha-RP synthesis in S. enterica lacking the CobT enzyme.
76 ganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum,
77         Simultaneous detection of Salmonella enterica, Listeria monocytogenes and Escherichia coli ba
78 pon recombinant expression of the Salmonella enterica LT2 ethanolamine utilization bacterial microcom
79               We further demonstrate that S. enterica LT2 retained the ability to grow on 1,2-propane
80                       Serovars of Salmonella enterica, namely Typhi and Typhimurium, reportedly, are
81                                   Salmonella enterica natively possesses both the Pdu and Eut operons
82  EutQ is required during anoxic growth of S. enterica on ethanolamine and tetrathionate.
83 erotypes impact the ecology of pathogenic S. enterica on-farm.
84            Phase variation of the Salmonella enterica opvAB operon generates a bacterial lineage with
85 ad-seq) in the bacterial pathogen Salmonella enterica, partitioning its coding and noncoding transcri
86  the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predi
87 agocytic host cells is central to Salmonella enterica pathogenicity and dependent on multiple genes w
88          We hypothesized that the Salmonella enterica phage SPN3US could be a useful model phage to a
89 rica ridA causes Ser sensitivity and that S. enterica RidA and its homologs from other organisms hydr
90         It is known that deleting Salmonella enterica ridA causes Ser sensitivity and that S. enteric
91 g complemented the Ser sensitivity of the S. enterica ridA mutant.
92                           Because Salmonella enterica ser. Typhimurium can overcome metal ion starvat
93 gation of a recurrent blood-borne Salmonella enterica serotype Enteritidis (S.
94 g molecular subtyping methods for Salmonella enterica serotype Enteritidis and survey the population
95  between nalidixic acid-resistant Salmonella enterica serotype Enteritidis infections in the United S
96                             A total of 52 S. enterica serotype Enteritidis isolates representing 16 m
97 ulation structure of commonly encountered S. enterica serotype Enteritidis outbreak isolates in the U
98  major lineages and ecological origins of S. enterica serotype Enteritidis.
99 a in the liver, subsequently confirmed as S. enterica serotype I 4,5,12:-:1,2.
100 ch 1, 2010, and Jan 31, 2014, 135 Salmonella enterica serotype Typhi (S Typhi) and 94 iNTS isolates w
101  (ie, blood cultures positive for Salmonella enterica serotype Typhi, or Paratyphi A, B, or C) on day
102 r colonization and persistence of Salmonella enterica serotype Typhimurium in chickens.
103                                   Salmonella enterica serotype Typhimurium is a food-borne pathogen t
104 d colonization resistance of mice against S. enterica serotype Typhimurium.
105 phoid-causing infectious bacteria Salmonella enterica serovar (Salmonella typhi) in 10 muL of sample
106 ovar Enteritidis, and 3% (3) were Salmonella enterica serovar Arizonae.
107  mice against the group D serovar Salmonella enterica serovar Dublin (85% vaccine efficacy).
108 e infection in different hosts, including S. enterica serovar Enteritidis (multiple hosts), S. Gallin
109  capacities of S. Typhimurium and Salmonella enterica serovar Enteritidis DeltaguaBA DeltaclpX live o
110 e epidemiological surveillance of Salmonella enterica serovar Enteritidis for over 2 decades.
111                                   Salmonella enterica serovar Enteritidis is a significant cause of g
112 ntly detected a large outbreak of Salmonella enterica serovar Enteritidis phage type 14b affecting mo
113 erovar Typhimurium, 10% (10) were Salmonella enterica serovar Enteritidis, and 3% (3) were Salmonella
114 epidemiological paradox surrounds Salmonella enterica serovar Enteritidis.
115 ferentiate the two invasive avian-adapted S. enterica serovar Gallinarum biotypes Gallinarum and Pull
116 uman cases of ceftiofur-resistant Salmonella enterica serovar Heidelberg in Quebec and Ontario attrib
117 athogenic, Gram-negative bacteria Salmonella enterica serovar Montevideo.
118 he first human challenge model of Salmonella enterica serovar Paratyphi A infection.
119                                   Salmonella enterica serovar Paratyphi A is a human-specific serovar
120 ovar Typhi or Salmonella enterica subspecies enterica serovar Paratyphi A or C were only isolated in
121 isplaced by infections with drug-resistant S enterica serovar Paratyphi A.
122 onella enterica serovar Typhi and Salmonella enterica serovar Sendai, causes enteric fever.
123 fections with Salmonella enterica subspecies enterica serovar Senftenberg are often associated with e
124                                   Salmonella enterica serovar Senftenberg is a common nontyphoidal Sa
125  mice against the group B serovar Salmonella enterica serovar Stanleyville (91% vaccine efficacy), an
126 reas of Asia, multidrug-resistant Salmonella enterica serovar Typhi (S Typhi) has been the main cause
127 n, to influence susceptibility to Salmonella enterica serovar Typhi (S Typhi) infection.
128                                   Salmonella enterica serovar Typhi (S Typhi) is responsible for an e
129 genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single do
130                 The population of Salmonella enterica serovar Typhi (S. Typhi), the causative agent o
131 cific serovar that, together with Salmonella enterica serovar Typhi and Salmonella enterica serovar S
132                                   Salmonella enterica serovar Typhi causes the systemic disease typho
133            Multiyear epidemics of Salmonella enterica serovar Typhi have been reported from countries
134 Indian subcontinent, with chronic Salmonella enterica serovar Typhi infection reported as a significa
135                                   Salmonella enterica serovar Typhi is a human-restricted Gram-negati
136                                   Salmonella enterica serovar Typhi is the etiological agent of typho
137 eport a typhoid fever case with a Salmonella enterica serovar Typhi isolate showing extended spectrum
138 ults from systemic infection with Salmonella enterica serovar Typhi or Paratyphi pathovars A, B or C(
139               Salmonella enterica subspecies enterica serovar Typhi or Salmonella enterica subspecies
140    Here we used a live attenuated Salmonella enterica serovar Typhi strain to create a bivalent mucos
141 ho acquired a Salmonella enterica subspecies enterica serovar Typhi strain with resistance against be
142 m-beta-lactamase (ESBL)-producing Salmonella enterica serovar Typhi was identified, whole-genome sequ
143 sia spp., Salmonella enterica and Salmonella enterica serovar Typhi, and Yersinia pestis), and 3 prot
144 causative agent of typhoid fever, Salmonella enterica serovar Typhi, can partially subvert this criti
145          Enteric fever, caused by Salmonella enterica serovar Typhi, is an important public health pr
146                                   Salmonella enterica serovar Typhi, the causative agent of typhoid f
147 ed salmonellae, 14% (21/152) were Salmonella enterica serovar Typhi, whereas 86% (131/152) were serov
148 acteremia, with a predominance of Salmonella enterica serovar Typhi.
149 eable Haemophilus influenzae, and Salmonella enterica serovar Typhi/Typhimurium.
150 erotyped were Salmonella enterica subspecies enterica serovar Typhimurium (45% [116/258] of which wer
151                         FrmR from Salmonella enterica serovar typhimurium (a CsoR/RcnR-like transcrip
152 coli, Yersinia enterocolitica and Salmonella enterica serovar Typhimurium (all gram-negative bacteria
153 (+)-coupled melibiose permease of Salmonella enterica serovar Typhimurium (MelBSt) demonstrates that
154 hat l-asparaginase II produced by Salmonella enterica serovar Typhimurium (S Typhimurium) inhibits T
155  more resistant to infection with Salmonella enterica serovar Typhimurium (S Typhimurium).
156                                   Salmonella enterica serovar Typhimurium (S.
157 lular [Listeria monocytogenes and Salmonella enterica serovar Typhimurium (S.
158 en investigated in the context of Salmonella enterica serovar Typhimurium (ST).
159 s using curli fibers, produced by Salmonella enterica serovar Typhimurium and Escherichia coli.
160         Bacteriophage P22 infects Salmonella enterica serovar Typhimurium and is a model for icosahed
161 nd other pathogens that use T3SS, Salmonella enterica serovar Typhimurium and Yersinia pseudotubercul
162 configuration is proposed for the Salmonella enterica serovar Typhimurium ArnT.
163  intracellular bacterial pathogen Salmonella enterica serovar Typhimurium as shown by their superior
164 exneri and the vT3SS and fT3SS of Salmonella enterica serovar Typhimurium at ~5 and ~4 nm resolution
165           The food-borne pathogen Salmonella enterica serovar Typhimurium benefits from acute inflamm
166                                   Salmonella enterica serovar Typhimurium can inject effector protein
167                       Conversely, Salmonella enterica serovar Typhimurium causes gastroenteritis in h
168 -negative intracellular bacterium Salmonella enterica serovar Typhimurium causes persistent systemic
169 nts and a reduced ability to kill Salmonella enterica serovar Typhimurium compared to that of macroph
170             The ST313 pathovar of Salmonella enterica serovar Typhimurium contributes to a high burde
171      We also demonstrate that the Salmonella enterica serovar Typhimurium core promoter is more activ
172 ter membrane vesicles (OMVs) from Salmonella enterica serovar Typhimurium displaying the variable N t
173  important colonization niche for Salmonella enterica serovar Typhimurium during gastrointestinal inf
174  we show that Salmonella enterica subspecies enterica serovar Typhimurium employs a dedicated mechani
175        A recent study showed that Salmonella enterica serovar Typhimurium exhibits sliding motility u
176                                   Salmonella enterica serovar Typhimurium exploits the host's type I
177 ing (TraDIS) to screen mutants of Salmonella enterica serovar Typhimurium for their ability to infect
178 ide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degr
179 totriosidase and a chitinase from Salmonella enterica serovar Typhimurium hydrolyze LacNAc from Galbe
180  the concentrations, inhibits E. coli and S. enterica serovar Typhimurium in an additive or antagonis
181 ignaling pathway and promote virulence of S. enterica serovar Typhimurium in mice.
182       We found that intracellular Salmonella enterica serovar Typhimurium induced the binucleation of
183 ously in pathogen and host during Salmonella enterica serovar Typhimurium infection and reveal the mo
184                                   Salmonella enterica serovar Typhimurium infection of immunocompeten
185        CARD9 is suppressed during Salmonella enterica serovar Typhimurium infection, facilitating inc
186                                   Salmonella enterica serovar Typhimurium is a bacterial pathogen cau
187                                   Salmonella enterica serovar Typhimurium is a common cause of food-b
188                                   Salmonella enterica serovar Typhimurium is a food-borne pathogen th
189                                   Salmonella enterica serovar Typhimurium is a Gram-negative food-bor
190  vivo innate immune resistance of Salmonella enterica serovar Typhimurium is attributed to the high-m
191 allosteric mechanism of FrmR from Salmonella enterica serovar Typhimurium is triggered by metals in v
192 and multilocus sequence typing on Salmonella enterica serovar Typhimurium isolates was performed.
193  ileal loop model inoculated with Salmonella enterica serovar Typhimurium LPS.
194 ations were absent in the closely related S. enterica serovar Typhimurium LT2 and from a mutant of S
195 richia coli K12, E. coli O157:H7, Salmonella enterica serovar Typhimurium LT2, Staphylococcus aureus,
196 lically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its ability to c
197 the structure of the prototypical Salmonella enterica serovar Typhimurium pathogenicity island 1 basa
198  of the tviA gene in nontyphoidal Salmonella enterica serovar Typhimurium reduced flagellin-induced p
199 by the enteropathogenic bacterium Salmonella enterica serovar Typhimurium requires a T6SS encoded wit
200        The intracellular pathogen Salmonella enterica serovar Typhimurium requires the mgtC gene to c
201 07 against the genomes of S. enterica subsp. enterica serovar Typhimurium strain LT2 and Salmonella b
202       We genetically engineered a Salmonella enterica serovar Typhimurium strain of multilocus sequen
203 om Mycobacterium tuberculosis, in Salmonella enterica serovar Typhimurium strain SL3261.
204 s bacteriostatic activity against Salmonella enterica serovar Typhimurium that is not shared by the r
205 ystem coordinates the response of Salmonella enterica serovar Typhimurium to diverse environmental ch
206 study, we examined the ability of Salmonella enterica serovar Typhimurium to infect the central nervo
207 ivo by the CspA family members of Salmonella enterica serovar Typhimurium to link the constitutively
208 ulator (Fur) in the resistance of Salmonella enterica serovar Typhimurium to the reactive nitrogen sp
209 fine YvyG as an orthologue of the Salmonella enterica serovar Typhimurium type III secretion system c
210                       Conversely, Salmonella enterica serovar Typhimurium uses a T3SS encoded by Salm
211 show that the intestinal pathogen Salmonella enterica serovar Typhimurium uses specialized metal tran
212                                   Salmonella enterica serovar Typhimurium utilizes molecular hydrogen
213 action between FlgM and FliS from Salmonella enterica serovar Typhimurium was characterized using gel
214 pigs experimentally infected with Salmonella enterica serovar Typhimurium was investigated.
215     Listeria monocytogenes V7 and Salmonella enterica serovar Typhimurium were used as model pathogen
216 Cs) to explore the interaction of Salmonella enterica serovar Typhimurium with iHOs.
217 ved genes in the PhoPQ regulon of Salmonella enterica serovar Typhimurium with that of PhoPQ-regulate
218                       Salmonella (Salmonella enterica serovar Typhimurium) secrete numerous effector
219 ve bacteria (Escherichia coli and Salmonella enterica serovar Typhimurium).
220 typed NTS isolates, 40% (41) were Salmonella enterica serovar Typhimurium, 10% (10) were Salmonella e
221 phoidal salmonellae, particularly Salmonella enterica serovar Typhimurium, are a major cause of invas
222 For the human and animal pathogen Salmonella enterica serovar Typhimurium, biofilm formation is corre
223 , either Klebsiella pneumoniae or Salmonella enterica serovar Typhimurium, enhanced translocation.
224                                In Salmonella enterica serovar Typhimurium, flagella-mediated motility
225  hydrophobic peptide expressed in Salmonella enterica serovar Typhimurium, inhibits growth in macroph
226                                In Salmonella enterica serovar Typhimurium, Mg(2+) limitation induces
227 hagic Escherichia coli (EHEC) and Salmonella enterica serovar Typhimurium, or the surrogate murine in
228 -phasor maps of Escherichia coli, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, Ba
229 c changes in Escherichia coli and Salmonella enterica serovar Typhimurium, suggesting that CyaY and Y
230           Unlike the nontyphoidal Salmonella enterica serovar Typhimurium, the genomes of S. Typhi an
231  individual functions, strains of Salmonella enterica serovar Typhimurium, the murine model of S Typh
232 for type III protein secretion in Salmonella enterica serovar Typhimurium, we discovered that several
233 coccus aureus and Salmonella enterica subsp. enterica serovar Typhimurium, were exposed to 25 kGy gam
234 t the Mg(2+) channel gene corA in Salmonella enterica serovar Typhimurium, which was previously thoug
235 protein can efficiently attenuate Salmonella enterica serovar Typhimurium-induced pyroptosis and proi
236 acultative intracellular pathogen Salmonella enterica serovar Typhimurium.
237 holerae and the invasive pathogen Salmonella enterica serovar Typhimurium.
238 mulation or upon coinfection with Salmonella enterica serovar Typhimurium.
239 ogical and virulence functions in Salmonella enterica serovar Typhimurium.
240 ptibility to hydrogen peroxide in Salmonella enterica serovar Typhimurium.
241 ular states of the model pathogen Salmonella enterica serovar Typhimurium.
242 enation, and aerobic expansion of Salmonella enterica serovar Typhimurium.
243                                   Salmonella enterica serovars Enteritidis and Kentucky differ greatl
244 burden of enteric fever caused by Salmonella enterica serovars Typhi and Paratyphi is substantial and
245 fever (39 degrees C-42 degrees C) Salmonella enterica serovars Typhi, Paratyphi A, and Sendai signifi
246 al Salmonella (NTS), particularly Salmonella enterica serovars Typhimurium and Enteritidis, is respon
247 SpvD is highly conserved across different S. enterica serovars, but residue 161, located close to the
248 apA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes
249 F (Pseudomonas aeruginosa), PrgI (Salmonella enterica SPI-1), SsaG (Salmonella enterica SPI-2), or Mx
250 Salmonella enterica SPI-1), SsaG (Salmonella enterica SPI-2), or MxiH (Shigella flexneri).
251 yphi A, and genes conserved among Salmonella enterica spp. and utilized strongly magnetized nanoparti
252 cline on the temporal dynamics of Salmonella enterica spp. enterica in feedlot cattle.
253 d Citrobacter rodentium Moreover, Salmonella enterica strains encode up to three NleB orthologs named
254           The NGS data set of the Salmonella enterica strains were used as a case study to show the w
255 y of various Escherichia coli and Salmonella enterica strains.
256  bongori, S. enterica subsp. salamae, and S. enterica subsp. arizonae share features of the infection
257 , S. enterica subsp. salamae, and Salmonella enterica subsp. arizonae The beta-lactamase TEM-1 report
258 omain with a nuclease domain from Salmonella enterica subsp. arizonae This modified V. cholerae strai
259 mae strain 3588/07 against the genomes of S. enterica subsp. enterica serovar Typhimurium strain LT2
260 cereus, Staphylococcus aureus and Salmonella enterica subsp. enterica serovar Typhimurium, were expos
261                                           S. enterica subsp. salamae encodes the Salmonella pathogeni
262                             Concurrently, S. enterica subsp. salamae infection of J774.A1 macrophages
263 are missing (e.g., avrA, sopB, and sseL), S. enterica subsp. salamae invades HeLa cells and contains
264 mpared a draft genome assembly of Salmonella enterica subsp. salamae strain 3588/07 against the genom
265       These results show that S. bongori, S. enterica subsp. salamae, and S. enterica subsp. arizonae
266 identified EspJ homologues in S. bongori, S. enterica subsp. salamae, and Salmonella enterica subsp.
267 species enterica serovar Typhi or Salmonella enterica subspecies enterica serovar Paratyphi A or C we
268             Human infections with Salmonella enterica subspecies enterica serovar Senftenberg are oft
269                                   Salmonella enterica subspecies enterica serovar Typhi or Salmonella
270  report a traveler who acquired a Salmonella enterica subspecies enterica serovar Typhi strain with r
271 4.2%) NTS isolates serotyped were Salmonella enterica subspecies enterica serovar Typhimurium (45% [1
272                 Here we show that Salmonella enterica subspecies enterica serovar Typhimurium employs
273                            Within Salmonella enterica subspecies enterica, a single lineage exists th
274                      Most lineages of the S. enterica subspecies Typhimurium cause gastroenteritis in
275 cing EcN to mice previously infected with S. enterica substantially reduced intestinal colonization b
276                                In Salmonella enterica, sulfur is trafficked to both thiamine biosynth
277                 Our results indicate that S. enterica synthesizes alpha-R, a metabolite that had not
278         The common human pathogen Salmonella enterica takes up citrate as a nutrient via the sodium s
279 l drug resistance is a growing problem in S. enterica that threatens to further compromise patient ou
280 prolonged exposure to heat-killed Salmonella enterica, the Gram-positive bacterium Bacillus subtilis,
281 ngs indicate that the sensor PhoQ enables S. enterica to respond to both host- and bacterial-derived
282 on system (T3SS) of intracellular Salmonella enterica translocates effector proteins into mammalian c
283 n host cells such as macrophages, Salmonella enterica translocates virulence (effector) proteins acro
284 en-specific depolymerase enzyme missing in S enterica Typhi, and we exploited this enzyme to isolate
285             Two major serovars of Salmonella enterica, Typhi and Typhimurium, have evolved a two-comp
286  intrabacterial redox dynamics of Salmonella enterica Typhimurium (S. Typhimurium) residing inside ma
287 stric infections of Gram-negative Salmonella enterica Typhimurium (ST), a major source of human food
288                 phoQ(W104C-A128C) Salmonella enterica Typhimurium is virulent in mice, indicating tha
289 accine, rabbits were orally infected with S. enterica Typhimurium strain chi3987 harboring phagemid N
290 l cells, particularly E. coli and Salmonella enterica Typhimurium.
291 a major lipid in E. coli Last, in Salmonella enterica, ubiK was required for proliferation in macroph
292               Dap accumulation in Salmonella enterica was previously shown to inhibit growth by unkno
293 vestigation of host adaptation in Salmonella enterica We highlight the value of the method in identif
294 S from either Escherichia coli or Salmonella enterica were directly infused into the mass spectromete
295  Antibiotic-resistant isolates of Salmonella enterica were selected on plates containing lethal conce
296  agents, especially non-typhoidal Salmonella enterica, were also responsible for the majority of deat
297       Some hazards, such as non-typhoidal S. enterica, were important causes of FBD in all regions of
298 , including Bacillus subtilis and Salmonella enterica which are predicted to have up to 18,000 and 31
299  used transcriptional differences between S. enterica wild-type and ridA strains to explore the bread
300 ific for E. coli eaeA (151bp) and Salmonella enterica yfiR (375bp) genes.

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top