戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 ntify a potential regulatory role of ACPS in fatty acid biosynthesis.
2 d gluconeogenesis but funneled directly into fatty acid biosynthesis.
3 cation: autophagy, actin polymerization, and fatty acid biosynthesis.
4  which catalyzes the first enzymatic step of fatty acid biosynthesis.
5 etoxifying reactive carbonyls and regulating fatty acid biosynthesis.
6  biosynthesis and 5 genes specify aspects of fatty acid biosynthesis.
7 ylCoA carboxylase (ACC), the first enzyme in fatty acid biosynthesis.
8 yses the first committed step in prokaryotic fatty acid biosynthesis.
9 r enzymes at the first major branch point in fatty acid biosynthesis.
10 antibacterial activity through inhibition of fatty acid biosynthesis.
11 AtpC, RpoA, and several proteins involved in fatty acid biosynthesis.
12 scription factors regulating cholesterol and fatty acid biosynthesis.
13 ase) catalyzes the committed step of de novo fatty acid biosynthesis.
14 g the chain-elongation reaction of bacterial fatty acid biosynthesis.
15 oth of which are involved in cholesterol and fatty acid biosynthesis.
16  (also known as BCCP), which is required for fatty acid biosynthesis.
17 me that catalyzes the last reductive step of fatty acid biosynthesis.
18 st reductive step in the elongation cycle of fatty acid biosynthesis.
19 PDC provides acetyl-CoA and NADH for de novo fatty acid biosynthesis.
20 noyl reductase enzyme from type II bacterial fatty acid biosynthesis.
21 esis and the less well exploited pathway for fatty acid biosynthesis.
22 ondensing enzyme that plays central roles in fatty acid biosynthesis.
23 w antibacterial compounds are the enzymes of fatty acid biosynthesis.
24 otein that is an essential cofactor in plant fatty acid biosynthesis.
25 yzes the first committed reaction of de novo fatty acid biosynthesis.
26 th exogenous fatty acids and de novo type II fatty acid biosynthesis.
27 P) is then active as the central coenzyme of fatty acid biosynthesis.
28  biosynthetic process that closely parallels fatty acid biosynthesis.
29 te genes encoding enzymes of cholesterol and fatty acid biosynthesis.
30 ACP) synthase III (FabH or KS III) enzyme of fatty acid biosynthesis.
31 where they activate genes of cholesterol and fatty acid biosynthesis.
32 CoA from acetyl CoA, a rate-limiting step in fatty acid biosynthesis.
33 y participate in determining the products of fatty acid biosynthesis.
34 ltienzyme complex involved in branched-chain fatty acid biosynthesis.
35 tion of genes encoding enzymes of sterol and fatty acid biosynthesis.
36 e that catalyzes the first committed step of fatty acid biosynthesis.
37 lesterol biosynthesis, the LDL receptor, and fatty acid biosynthesis.
38 ffect of 25-hydroxycholesterol on sterol and fatty acid biosynthesis.
39 atty acid degradation and as an activator of fatty acid biosynthesis.
40 (ACP) with acetyl-CoA in plant and bacterial fatty acid biosynthesis.
41 ulation of fatty acid oxidation, rather than fatty acid biosynthesis.
42 directly confer sensitivity to inhibitors of fatty acid biosynthesis.
43 ters for key enzymes of both cholesterol and fatty acid biosynthesis.
44  and may also require increasing the flux of fatty acid biosynthesis.
45 ion relevant to understanding polyketide and fatty acid biosynthesis.
46 e the multidomain protein can participate in fatty acid biosynthesis.
47 that BPL-1 is required for efficient de novo fatty acid biosynthesis.
48 correlated with a decrease in branched-chain fatty acid biosynthesis.
49 ricarboxylic acid metabolism (TCA) cycle and fatty acid biosynthesis.
50 tions in either amino acid concentrations or fatty acid biosynthesis.
51 ier protein) (holo-ACPP) in an early step of fatty acid biosynthesis.
52  acetyl-CoA to the cytosol for the essential fatty acid biosynthesis.
53 ete down-regulation of proteins required for fatty acid biosynthesis.
54 hat controls the first rate-limiting step in fatty acid biosynthesis.
55  reconstituted in vitro by coupling Gcs with fatty acid biosynthesis.
56 , from the TCA cycle for use in HCMV-induced fatty acid biosynthesis.
57 ds of the Arabidopsis (Arabidopsis thaliana) fatty acid biosynthesis 1 (fab1) mutant contain a 35% to
58 ression of several hepatic genes involved in fatty acid biosynthesis, 2) elevated postprandial fatty
59 ed in lignan synthesis, cell elongation, and fatty acid biosynthesis, all of which have important rol
60                  Bacterial genes involved in fatty acid biosynthesis, amounts of lactobacilli, and sa
61 production, including 9% to 19% of carbon to fatty acid biosynthesis and 32% to 46% of carbon to amin
62 sing enzymes, is a key catalyst in bacterial fatty acid biosynthesis and a promising target for novel
63 of the acyl carrier protein (ACP) as used in fatty acid biosynthesis and a range of other metabolic e
64 -2 processing and prevented the induction of fatty acid biosynthesis and ACC1 expression.
65  mellitus in animals leads to a reduction of fatty acid biosynthesis and an upregulation of an altern
66 ell as in providing a tool for investigating fatty acid biosynthesis and catabolism.
67 ion factor FadR regulates genes required for fatty acid biosynthesis and degradation in an opposing m
68 y relevant drug target, we demonstrated that fatty acid biosynthesis and FabI activity are essential
69 g an intermediate in the pathways of de novo fatty acid biosynthesis and fatty acid elongation, malon
70  well as other associated pathways including fatty acid biosynthesis and glycolysis.
71 for essential biosynthetic processes such as fatty acid biosynthesis and haem biosynthesis, the two l
72 a transporter genes that are associated with fatty acid biosynthesis and intracellular lipid traffick
73 e for catalyzing the final step of bacterial fatty acid biosynthesis and is an attractive target for
74 es the final step in each cycle of bacterial fatty acid biosynthesis and is an attractive target for
75 et, since it is central to the initiation of fatty acid biosynthesis and is highly conserved among Gr
76 ein reductase (ENR) is involved in bacterial fatty acid biosynthesis and is the target of the antibac
77                 The primary ones are type II fatty acid biosynthesis and isoprenoid biosynthesis.
78 C1), an enzyme with crucial roles in de novo fatty acid biosynthesis and lipogenesis and essential fo
79 t, revealing a feedback loop between omega-9 fatty acid biosynthesis and MSI1 activity.
80 ostatic cancers exhibit increased endogenous fatty acid biosynthesis and overexpress certain enzymes
81  and malonyl-CoA levels, thereby influencing fatty acid biosynthesis and oxidation.
82 inate the acyl-acyl carrier protein track of fatty acid biosynthesis and play an essential role in de
83         The fatty acyl group is derived from fatty acid biosynthesis and provides signal specificity,
84 ter, this suggests a functional link between fatty acid biosynthesis and R1128 biosynthesis in the en
85  modulated energy homeostasis by suppressing fatty acid biosynthesis and shifting the metabolism to o
86 ogy of ARM, including pathways involved with fatty acid biosynthesis and the complement system.
87     ATP(lo)pyruvate(lo) conditions triggered fatty acid biosynthesis and the formation of cytoplasmic
88  at least two genes required for unsaturated fatty acid biosynthesis and the gene encoding the transc
89                       Both the activation of fatty acid biosynthesis and the sensitivity to fatty aci
90 of genes encoding enzymes of cholesterol and fatty acid biosynthesis and uptake.
91 high-resolution structural information about fatty acid biosynthesis, and a new strategy is required
92 se, the major enzyme required for endogenous fatty acid biosynthesis, and carcinoma lines are growth
93  and cell cycle progression, anti-apoptotic, fatty acid biosynthesis, and endoplasmic reticulum stres
94 colysis, the tricarboxylic acid (TCA) cycle, fatty acid biosynthesis, and nucleotide biosynthesis.
95 ght into the regulation of a crucial step in fatty acid biosynthesis, and provide a plausible explana
96 espiration (aerobic and anaerobic), genes of fatty acid biosynthesis, and the principal genes of amin
97 he pentose phosphate pathway, nucleotide and fatty acid biosynthesis, and the tricarboxylic acid cycl
98        DAF-18/PTEN, AMP-activated kinase and fatty acid biosynthesis are also involved.
99             But whereas the intermediates in fatty acid biosynthesis are fully reduced to generate un
100 xy-3-methylglutaryl-coenzyme A reductase and fatty acid biosynthesis are known to be inhibited by the
101 cyl carrier protein (ACP) and the enzymes of fatty acid biosynthesis are unknown.
102 s, and they suggest how microbes could alter fatty acid biosynthesis as an immune evasion mechanism.
103 t pathway analyses identified coenzyme A and fatty acid biosynthesis as biological processes related
104 m the SREBP-1c-mediated regulation of common fatty acid biosynthesis, as well as by peptide uptake an
105 regulation, metabolism of alpha-glucans, and fatty acid biosynthesis, as well as genes affecting cell
106 identified genes involved in cholesterol and fatty acid biosynthesis, as well as genes involved in fa
107 , which blocked growth through inhibition of fatty acid biosynthesis at the FabI step.
108 cc2 background, because when ACC2 is absent, fatty acid biosynthesis becomes dependent on translation
109 oited for fuel and chemical production, with fatty-acid biosynthesis (beta-ketoacyl-ACP synthases) at
110 have previously shown that the difference in fatty acid biosynthesis between cancer and normal cells
111 have shown previously that the difference in fatty acid biosynthesis between cancer and normal cells
112  enzyme that catalyzes the committed step in fatty acid biosynthesis: biotin-dependent conversion of
113 tually divided into two blocks of reactions (fatty acid biosynthesis (Block A), lipid assembly (Block
114 enzymes FabA and FabZ catalyze a key step in fatty acid biosynthesis; both dehydrate hydroxyacyl fatt
115 ith acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids meta
116 fragment increases mRNAs encoding enzymes of fatty acid biosynthesis, but not sterol or isoprenoid bi
117 o detected in vivo by monitoring the rate of fatty acid biosynthesis by [(14)C]acetate labeling of ce
118                 The first elongation step of fatty acid biosynthesis by a type II dissociated fatty a
119 e III step contributes to the attenuation of fatty acid biosynthesis by acyl-ACP.
120 SIII) initiates straight- and branched-chain fatty acid biosynthesis by catalyzing the decarboxylativ
121 ases provide the building blocks for de novo fatty acid biosynthesis by fatty acid synthase I (FAS I)
122 Applying this approach to study the rates of fatty acid biosynthesis by single cells of S. aureus gro
123                 Initiation of straight-chain fatty acid biosynthesis by the type II FAS involves a di
124          Enoyl-ACP reductases participate in fatty acid biosynthesis by utilizing NADH to reduce the
125 X operon or substantive direct regulation of fatty acid biosynthesis by VicR or VicR-P.
126 olites that are generated or utilized during fatty acid biosynthesis can significantly influence gene
127 The genes encoding the components of type II fatty acid biosynthesis cluster at a single location wit
128 d with lipid droplets and that inhibitors of fatty acid biosynthesis decreased VLS formation or viral
129 lar level of malonyl-CoA, an intermediate in fatty acid biosynthesis, depends on its rate of synthesi
130                 Consistent with an increased fatty acid biosynthesis, determination of fat in the liv
131 ges of infection, suggesting a late role for fatty acid biosynthesis during HCMV replication.
132 e transcription of genes encoding enzymes of fatty acid biosynthesis, e.g. fatty-acid synthase (FAS).
133 -ACP substrate bound to the Escherichia coli fatty acid biosynthesis enoyl reductase enzyme (FabI), b
134 ethylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of
135  adjacent to the active site cavities of the fatty acid biosynthesis enzymes and the high degree of s
136                                SpoT monitors fatty acid biosynthesis (FAB), since following cerulenin
137                                          The fatty acid biosynthesis (FAS-II) pathway in Mycobacteriu
138 tep in the elongation cycle of the bacterial fatty acid biosynthesis (FAS-II) pathway.
139 ey enzymes involved in the type II bacterial fatty acid biosynthesis (FASII) pathway and are putative
140  that the fasamycins inhibit FabF of type II fatty acid biosynthesis (FASII).
141 DX1 in redox metabolism and carbohydrate and fatty acid biosynthesis, for FDX2 in anaerobic metabolis
142 mal peptide synthase family, and mycolic and fatty acid biosynthesis gene families were disproportion
143 ene, encoding a transcriptional regulator of fatty acid biosynthesis genes, contained 54.5% of these
144         Although the critical role of ACP in fatty acid biosynthesis has been established, the role o
145 h a number of potent inhibitors of microbial fatty acid biosynthesis have been discovered, few of the
146            Acyl carrier proteins involved in fatty acid biosynthesis have been shown to exhibit a hig
147   Dihomo-gamma-linolenic acid also inhibited fatty acid biosynthesis in 3T3-L1 preadipocytes and sele
148     Although coordination of astaxanthin and fatty acid biosynthesis in a stoichiometric fashion was
149 es the first committed and regulated step in fatty acid biosynthesis in bacteria and thus is a prime
150 n when compared with other Kas inhibitors of fatty acid biosynthesis in bacteria.
151 sation reaction in the initiation of type II fatty acid biosynthesis in both Gram-positive and Gram-n
152 to identify potential feedback regulation of fatty acid biosynthesis in Brassica napus embryo-derived
153 arter units for straight- and branched-chain fatty acid biosynthesis in cell extracts of Streptomyces
154 of genes encoding enzymes of cholesterol and fatty acid biosynthesis in cultured cells.
155 ere is an associated increase in the rate of fatty acid biosynthesis in DENV-infected cells, and de n
156 nection between the regulator of unsaturated fatty acid biosynthesis in E. coli, FabR, thioesterase e
157                              Cholesterol and fatty acid biosynthesis in hepatocytes declined by 75%.
158 ion of genes encoding enzymes of unsaturated fatty acid biosynthesis in liver.
159 s in turn is predicted to lower the rates of fatty acid biosynthesis in liver.
160 he entire coordinated program of unsaturated fatty acid biosynthesis in mouse liver.
161  step reaction that initiates the pathway of fatty acid biosynthesis in plants and bacteria.
162  the first and committed reaction of de novo fatty acid biosynthesis in plastids.
163 scriminates against the streptomycete ACP of fatty acid biosynthesis in preference to RedQ, an ACP of
164 consistent with previous in vivo analyses of fatty acid biosynthesis in S. collinus, which suggested
165                  Whereas only WRI1 activates fatty acid biosynthesis in seeds for triacylglycerol pro
166 In the current model of medium-chain (C8-14) fatty acid biosynthesis in seeds, specialized FatB acyl-
167 initiating both straight- and branched-chain fatty acid biosynthesis in Streptomyces and that the rat
168 diated transformation of fibroblasts induces fatty acid biosynthesis in the absence of significant ch
169 nses acetyl-CoA with malonyl-ACP to initiate fatty acid biosynthesis in the dissociated, type II fatt
170 nfirm the earlier speculation that elevating fatty acid biosynthesis in the leaf would lead to an inc
171 uted throughout North America and implicates fatty acid biosynthesis in the pathogenesis of macular d
172 yl-ACP synthase III (KASIII) which initiates fatty acid biosynthesis in the type II dissociable fatty
173                                Inhibition of fatty acid biosynthesis in these cells resulted in progr
174 itor, cerulenin, markedly reduces tumor cell fatty acid biosynthesis in vivo; (d) fatty acid synthase
175 ns in ACC1 and FAS1, two genes important for fatty acid biosynthesis in yeast; ACC1 encodes acetyl co
176 ns localize to plastids, the site of de novo fatty-acid biosynthesis in plant cells.
177 yl-ACP thioesterase (OTE), another enzyme of fatty acid biosynthesis, in both tissues.
178 boxylase (ACC), the key regulatory enzyme in fatty acid biosynthesis, in the arcuate nucleus (Arc) an
179                          The location of the fatty acid biosynthesis inhibitor, cerulenin, that posse
180  fatty acids is blocked by the addition of a fatty acid biosynthesis inhibitor, the organism is rende
181 ells treated with either excess SCFAs or the fatty acid biosynthesis inhibitors cerulenin and 5-(tetr
182                             Several of these fatty acid biosynthesis inhibitors have potential as lea
183 ate that this enzyme has a universal role in fatty acid biosynthesis, irrespective of the plant speci
184                          Given that elevated fatty acid biosynthesis is a hallmark of many cancers an
185                                  Unsaturated fatty acid biosynthesis is a vital facet of Escherichia
186                                              Fatty acid biosynthesis is an essential component of met
187 nes, showed that the expression of genes for fatty acid biosynthesis is elevated in PI126449 glands,
188                                              Fatty acid biosynthesis is essential for bacterial survi
189                                              Fatty acid biosynthesis is essential for the survival of
190 s been replaced and the essential process of fatty acid biosynthesis is initiated by plasmid-based ex
191                                              Fatty acid biosynthesis is transcriptionally regulated b
192 ating the transcription of genes involved in fatty acid biosynthesis is unknown.
193 loroplast accD locus, which is necessary for fatty acid biosynthesis, is essential in Arabidopsis but
194 which encodes the rate-controlling enzyme of fatty acid biosynthesis, is shown to be regulated by cel
195 Enoyl reductase (ENR), an enzyme involved in fatty acid biosynthesis, is the target for antibacterial
196      ACC catalyzes the first step in de novo fatty acid biosynthesis known to be downstream of the SR
197 oteins encoded in O-island 138, a cluster of fatty acid biosynthesis-like genes located adjacent to a
198 imiting enzyme in long-chain polyunsaturated fatty acid biosynthesis, mediates the signature pattern
199 as targeted to the stroma of plastids, where fatty acid biosynthesis occurs.
200 ction of ACC, the rate-controlling enzyme of fatty acid biosynthesis, occurs in the liver in response
201 (i.e., FabG, FabZ, and FabI) involved in the fatty acid biosynthesis of P. falciparum.
202 l carrier protein (ACP), which allows native fatty acid biosynthesis of the Escherichia coli host to
203  bacterial metabolism is primarily fueled by fatty acids, biosynthesis of sugars from intermediates o
204  FabH-independent pathway for straight-chain fatty acid biosynthesis operates in S. glaucescens.
205 gene expression of other enzymes involved in fatty acid biosynthesis or of SREBP-1c.
206 d in TAG biosynthesis than genes involved in fatty acid biosynthesis or other lipid pathways.
207 trols the transcription of genes involved in fatty acid biosynthesis, our results reveal a unique reg
208 tase, FabI, is a key enzyme in the bacterial fatty acid biosynthesis pathway (FAS II).
209                    The P. falciparum type II fatty acid biosynthesis pathway (PfFAS-II) has been foun
210 al structures for the enzymes of the type II fatty acid biosynthesis pathway can now be exploited in
211 the elongation-condensing enzyme FabF of the fatty acid biosynthesis pathway in bacteria.
212                                          The fatty acid biosynthesis pathway is an attractive but sti
213              Altogether, we demonstrate that fatty acid biosynthesis pathway manipulation can help ov
214 ase enzyme in the Mycobacterium tuberculosis fatty acid biosynthesis pathway, we predicted its possib
215 icarboxylic acid cycle and its efflux to the fatty acid biosynthesis pathway.
216 acylated acyl carrier protein (ACP) from the fatty acid biosynthesis pathway.
217 uction of key enzymes of the cholesterol and fatty acid biosynthesis pathways, and thus membrane lipi
218 ses; among these are inhibitors of bacterial fatty acid biosynthesis, peptidoglycan synthesis, and di
219            Consistent with a role in de novo fatty acid biosynthesis, pfKASIII exhibited typical KAS
220 f biosynthetic pathways in Escherichia coli: fatty acid biosynthesis, phospholipid biosynthesis, lipo
221 coenzyme A carboxylase (ACCase) function and fatty acid biosynthesis, plants with reduced or increase
222        Therefore we propose a model in which fatty acid biosynthesis plays a central role in regulati
223 A carrying fatty acids reduced the amount of fatty acid biosynthesis proteins to the same extent as p
224  the discovery of two genes encoding Type II fatty acid biosynthesis proteins: ACP (acyl carrier prot
225 ductase catalyses the last reductive step of fatty acid biosynthesis, reducing an enoyl acyl carrier
226 ductase catalyses the last reductive step of fatty acid biosynthesis, reducing the enoyl group of a g
227 and that drugs that regulate cholesterol and fatty acid biosynthesis regulate the replication of the
228   An ideal target for metabolic engineering, fatty acid biosynthesis remains poorly understood on a m
229 duct inhibitors of the condensation steps in fatty acid biosynthesis, represent new classes of compou
230                                    The FabR (fatty acid biosynthesis repressor) transcriptional repre
231 tiation and elongation condensing enzymes of fatty acid biosynthesis respectively.
232  characterization of the viral modulation of fatty acid biosynthesis revealed that a key enzyme in th
233 n implicated as a physiological inhibitor of fatty acid biosynthesis since acyl-ACP degradation by th
234 he level of malonyl-CoA (the intermediate of fatty acid biosynthesis) specifically in the Arc and inc
235 e level of palmitoyl-CoA (a major product of fatty acid biosynthesis) specifically in the PVN.
236                Pharmacological inhibition of fatty acid biosynthesis suppressed the replication of bo
237 oorganisms, are made by a process resembling fatty acid biosynthesis that allows the suppression of r
238  represses genes involved in cholesterol and fatty acid biosynthesis that are transcriptionally regul
239 zymatic function for M. tuberculosis CitE in fatty acid biosynthesis that is analogous to bacterial c
240 his mutant lacks FabH, an enzyme involved in fatty acid biosynthesis that previously was thought to b
241 arboxylase (ACC) catalyzes the first step of fatty acid biosynthesis, the synthesis of malonyl-CoA fr
242 ependently; one is in fabZ, a dehydratase in fatty acid biosynthesis; the other is in thrS, the Thr-t
243 WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated
244  pantothenamides is due to the inhibition of fatty acid biosynthesis through the formation and accumu
245 MV targets ACC1, the rate-limiting enzyme of fatty acid biosynthesis, through multiple mechanisms.
246 s associate with acyl-ACP as a mechanism for fatty acid biosynthesis to coordinate the expression, Fe
247 gent response enzyme SpoT appears to monitor fatty acid biosynthesis to govern transmission trait exp
248    This functional redundancy allows limited fatty acid biosynthesis to occur in the absence of heter
249 proteins (plastid-localized intermediates of fatty acid biosynthesis) to release 3-ketoacids and that
250 terol homeostasis, ApoA-I/ABCA1 pathway, and fatty acid biosynthesis/triglyceride metabolism.
251 etabolism, Porstmann et al. demonstrate that fatty acid biosynthesis, under the transcriptional contr
252 ), a key enzyme initiating bacterial type II fatty acid biosynthesis, usually involve incubation of r
253 ntiseptic triclosan, which are inhibitors of fatty acid biosynthesis, validates this pathway as a tar
254  of 9 has been confirmed to be inhibition of fatty acid biosynthesis via inhibition of FabI.
255 ein (ACP) synthase involved in mitochondrial fatty acid biosynthesis was also identified.
256            The primitiveness of contemporary fatty acid biosynthesis was evaluated by using the therm
257          This oncogene-induced activation of fatty acid biosynthesis was found to be mammalian target
258 sis of central pathway architecture, E. coli fatty acid biosynthesis was re-cast into three modules:
259 conversion of malonyl-CoA to malonyl-ACP for fatty acid biosynthesis was shown to be active with TcmM
260                         AcpP, which supports fatty acid biosynthesis, was also a good substrate in th
261 tive in producing primers for branched-chain fatty acid biosynthesis, was bypassed with one of a seri
262 coli acyl carrier protein (ACP), involved in fatty acid biosynthesis, was not bound to DltD and thus
263  accumulation of intermediate metabolites of fatty acid biosynthesis, we then questioned whether prot
264 acetyl-phosphate and subsequently leading to fatty acid biosynthesis were consistently upregulated du
265 fast light-responding genes in, for example, fatty acid biosynthesis were identified and allocated to
266   Proportions of bacterial genes involved in fatty acid biosynthesis were lower in feces from patient
267 acyl-acyl-carrier-proteins (intermediates in fatty acid biosynthesis) were hydrolyzed and decarboxyla
268 ly distinct from all known ketoreductases of fatty acid biosynthesis, which instead belong to the sho
269 els for known SREBP target genes involved in fatty acid biosynthesis, which led to significantly high
270                          One such pathway is fatty acid biosynthesis, whose induction is observed upo
271 ied out the initial condensation reaction of fatty acid biosynthesis with acetyl-coenzyme A (acetyl-C
272 emcitabine responsiveness upon inhibition of fatty acid biosynthesis with orlistat.
273 l-CoA carboxylase (ACC) and thereby inhibits fatty acid biosynthesis with submicromolar potency.

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top