コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 ally induced aggregation of non-glycosylated firefly luciferase.
2 transgene that expresses both HPV-16 E7 and firefly luciferase.
3 for subsequent bioluminescent reaction with firefly luciferase.
4 ) convert adenine to ATP for quantitation by firefly luciferase.
5 T cells and tumor cells modified to express firefly luciferase.
6 terminal and COOH terminal fragments of the firefly luciferase.
7 el substrates malate dehydrogenase (MDH) and firefly luciferase.
8 echanism of the anesthetic inhibition of the firefly luciferase.
9 rescence of a Ca(2+) dye and luminescence of firefly luciferase.
10 erase gene based on the crystal structure of firefly luciferase.
11 pGRE.Luc drives the expression of firefly luciferase.
12 signed to alter the substrate specificity of firefly luciferase.
13 translation of PTEN and a heterologous gene firefly luciferase.
14 M175/18f virus genome with sequence encoding firefly luciferase.
15 ld be detected by bioluminescence imaging of firefly luciferase.
16 tation of pancreatic cancer cells expressing firefly luciferase.
17 ments containing an E-box and E'-box driving firefly luciferase.
18 ted to adenosine triphosphate and coupled to firefly luciferase.
19 ed to express a green fluorescent protein or firefly luciferase.
20 lding efficiency of the model client protein firefly luciferase.
21 a bioluminescent response in the presence of firefly luciferase.
22 ne myeloma cells stably transfected with the firefly luciferase (5TGM1/luc) were inoculated from tail
24 elongation errors by monitoring the level of firefly luciferase activity from a mutant allele inactiv
25 cation, produced dose-dependent decreases in firefly luciferase activity that correlated with changes
27 uminescence imaging of CD1 promoter-directed firefly luciferase activity), and progression to cell di
32 en complementary non-functional fragments of firefly luciferase allows direct detection of IP(3) in p
34 struct containing a gamma promoter linked to firefly luciferase and a beta promoter linked to renilla
35 izing two different split-protein reporters, firefly luciferase and beta-lactamase, while also testin
37 inhibitor of metalloproteinases 3 (TIMP3) or firefly luciferase and designated them rQT3 and rQLuc, r
39 background) that constitutively express both firefly luciferase and enhanced green fluorescence prote
40 ng double-fusion reporter gene consisting of firefly luciferase and enhanced green fluorescent protei
41 asts were lentivirally transduced to express firefly luciferase and green fluorescent protein (GFP).
42 ts were genetically modified to express both firefly luciferase and green fluorescent protein (mH9c2)
43 FVB mice with a beta-actin promoter driving firefly luciferase and green fluorescent protein double
44 by sectioning mouse hearts (n=40) expressing firefly luciferase and green fluorescent protein into sl
45 ell line transduced with a vector expressing firefly luciferase and green fluorescent protein were tr
47 sion (TF; monomeric red fluorescent protein, firefly luciferase and herpes simplex virus thymidine ki
48 lar bioenergetics and the signal obtained by firefly luciferase and human sodium-iodide symporter lab
50 ltures in 96-well plates were incubated with firefly luciferase and luciferin for the ATP assay or lo
52 ransduced with an ubiquitin promoter driving firefly luciferase and monomeric red fluorescence protei
53 ally brighter signals from deep tissues than firefly luciferase and other bioluminescent proteins.
55 attached to the C-terminal fragment of split-firefly luciferase and the coiled-coil Fos, which is spe
56 i.v. administration of Ad vectors expressing firefly luciferase and to retarget virus to hepatic colo
58 ntiviral vectors encoding the reporter genes firefly-luciferase and murine interleukin-10 were admini
59 ontaining monomeric red fluorescent protein, firefly luciferase, and herpes simplex virus thymidine k
60 mes that also includes acyl-CoA synthetases, firefly luciferase, and nonribosomal peptide synthetases
61 nterfering RNA (siRNA) against a model gene, firefly luciferase, and PEI25 or PEI87 afforded a 77% an
62 cludes other acyl- and aryl-CoA synthetases, firefly luciferase, and the adenylation domains of the m
63 of Sindbis virus were engineered to express firefly luciferase, and the Xenogen IVIS system was used
64 knockin mouse were genetically modified with firefly luciferase (APL(luc)) to allow tracking by biolu
65 f the C-terminal domain and conserved in all firefly luciferases, are each essential for only one of
68 introduction of green fluorescent protein or firefly luciferase as fusions with replicase proteins.
70 has Renilla luciferase as the 5' cistron and firefly luciferase as the 3' cistron, has been found to
74 ord chemiluminescence (CL) from an optimized firefly luciferase-ATP bioluminescence reaction system,
76 the bioluminescent fusion reporters beta-cat firefly luciferase (beta-cat-FLuc) and beta-cat click be
77 l BRET-FRET energy transfer process based on firefly luciferase bioluminescence can be employed to as
79 aK, but was unable to stimulate refolding of firefly luciferase by DnaK, and inhibited refolding by D
80 e molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrol
86 sHSPs with three different model substrates, firefly luciferase, citrate synthase, and malate dehydro
88 new crystal structures of the product-bound firefly luciferase combined with the previously determin
92 Analogues of dihydrofolate reductase and firefly luciferase containing glycosylated amino acids a
94 rine CT26 colorectal cancer cells expressing firefly luciferase (CT26-Luc), and the ACE-CD vector was
97 elii YM strain (PyLuc) that stably expresses firefly luciferase driven by a constitutive promoter.
98 gment complementation associated recovery of firefly luciferase enzyme activity with intact firefly l
99 based on the expression of a variant of the firefly luciferase enzyme in vivo and measurement of lum
105 ion of the biophotonic signal of established firefly luciferase-expressing Burkitt lymphoma xenograft
106 on henipavirus pathogenesis, we generated a firefly luciferase-expressing NiV and monitored virus re
107 selective accumulation of i.v. administered firefly luciferase-expressing T cells in intracerebral x
108 ransfecting mutant HIV clones expressing the firefly luciferase expression gene with a WT clone expre
109 o the GRE was demonstrated by an increase in firefly luciferase expression in transfected cells treat
111 yc activity in living subjects using a split Firefly luciferase (FL) complementation strategy to dete
112 etween the three luciferases [mtfl, tfl, and firefly luciferase (fl)] both in cell culture and in liv
113 simplex virus type I thymidine kinase [tk], firefly luciferase [fl], and Renilla luciferase [rl]) pl
114 s (SkMb), and fibroblasts (Fibro) expressing firefly luciferase (Fluc) and green fluorescence protein
115 ally implanted NPC-FL-sTRAIL expressing both firefly luciferase (Fluc) and S-TRAIL was shown to migra
116 very frequently use reporter enzymes such as firefly luciferase (FLuc) as indicators of target activi
117 g of mice infected with parasites expressing firefly luciferase (FLUC) driven by the SAG2D promoter,
118 noninvasively, we developed a chimeric EGFR-firefly luciferase (FLuc) fusion reporter to directly mo
122 m cells (gADSCs) were transduced with either Firefly luciferase (Fluc) or Gaussia luciferase (Gluc) r
123 la luciferase (RLuc), beta-galactosidase and firefly luciferase (FLuc) ORFs linked in frame and separ
126 LK1 confers MAPK specificity by activating a firefly luciferase (FLuc) reporter gene when the Ets-lik
128 its activity to an off-target effect on the Firefly luciferase (FLuc) reporter used in the developme
129 mouse model that constitutively expresses a firefly luciferase (FLuc) split reporter complementation
131 or VEEV (subtype IC strain 3908) expressing firefly luciferase (fLUC) to simulate mosquito infection
132 nsgenic reporter mouse strain that expresses firefly luciferase (Fluc) under the regulatory control o
133 imaging reporter mice in which expression of firefly luciferase (FLuc) was placed under the control o
134 to synthesize d-luciferin, the substrate for firefly luciferase (Fluc), along with a novel set of ele
136 r finding that d-luciferin, the substrate of firefly luciferase (fLuc), is a specific substrate of AB
137 tation biosensor based on optical imaging of Firefly luciferase (FLuc), to quantitatively image p53 s
140 ic promoter virus expressing either a large, firefly luciferase (fLuc; 1,650 nucleotides), or small,
141 harge-coupled device camera, the analysis of firefly luciferase fragment complementation in transient
142 mbinations of nonoverlapping and overlapping firefly luciferase fragments that can be used for studyi
144 ic islets (200 per recipient) expressing the firefly luciferase from FVB/NJ strain (H-2q) mice were t
145 binant CII proteins more efficiently protect firefly luciferase from insolubilization during heating
147 sses a bioluminescent reporter consisting of firefly luciferase fused to a region of HIF that is suff
149 novel transcriptionally coupled IkappaBalpha-firefly luciferase fusion reporter and characterized the
152 anking region was inserted upstream from the firefly luciferase gene and the chimeric construct was t
154 We identified different fragments of the firefly luciferase gene based on the crystal structure o
155 abidopsis thaliana (Col-0) line containing a firefly luciferase gene controlled by a promoter region
156 herpesvirus 68) was constructed to express a firefly luciferase gene driven by the viral M3 promoter
157 veloped a transgenic mouse model wherein the firefly luciferase gene expression was dependent on the
158 -based methodology for rapidly integrating a firefly luciferase gene in somatic cells under the contr
159 this end, the APP1 promoter was fused to the firefly luciferase gene in the C. neofor-mans GAL7:IPC1
160 transfected with a reporter comprised of the firefly luciferase gene interrupted by an abnormally spl
161 explants from transgenic mice containing the firefly luciferase gene luc controlled by the mPer1 prom
163 g the IFN-stimulated gene 56 promoter-driven firefly luciferase gene stably integrated in a TLR3-expr
164 we constructed reporter lines expressing the firefly luciferase gene under the control of the SAR-ind
165 nstructed a di-cistronic reporter in which a firefly luciferase gene was linked to a chloramphenicol
166 ation of an adenovirus vector containing the firefly luciferase gene was measured serially and noninv
167 ression of the coding region of the enhanced firefly luciferase gene were employed to identify region
169 inoma cells were genetically modified with a firefly luciferase gene, and light emission was used for
170 c and Cfluc are the N and C fragments of the firefly luciferase gene, respectively): Nfluc (1-475)/Cf
175 ic region was cloned between the Renilla and firefly luciferase genes, which acted as reporters of OR
176 stably express green fluorescent protein and firefly luciferase (GFP(+)/Luc(+)) were used for the tra
178 talysts (cysteamine) was used to encapsulate firefly luciferase, green and blue fluorescent proteins
181 ct organisms, we engineered an IkappaB alpha-firefly luciferase (IkappaB alpha-FLuc) fusion reporter.
183 translation of a downstream cistron encoding Firefly luciferase in a dicistronic expression vector.
184 the Sse1p mutants maintained heat-denatured firefly luciferase in a folding-competent state in vitro
186 to achieve specific and robust expression of firefly luciferase in the prostate glands of transgenic
193 by using dual-luciferase reporters, in which firefly luciferase is used as the retrotransposition ind
194 hat D-luciferin, the endogenous substrate of firefly luciferase, is a specific substrate for ABCG2.
195 ismate synthase (ICS1) promoter was fused to firefly luciferase (luc) and a homozygous transgenic lin
197 consensus sequence was sufficient to target firefly luciferase (LUC) for low protein accumulation eq
198 second construct was generated in which the firefly luciferase (Luc) gene was inserted in place of H
199 the red fluorescent protein (mCherry) or the firefly luciferase (Luc) genes are inserted into the RSV
200 d in transgenic mice containing an inducible firefly luciferase (luc) reporter gene under transcripti
202 ter mouse model that predominantly expresses firefly luciferase (luc2p) in the paw epidermis--the reg
203 rate/reporter bioluminescence imaging (Fluc: firefly luciferase-luciferin and Rluc: Renilla luciferas
205 e-fusion (TF) reporter gene that consists of firefly luciferase, monomeric red fluorescence protein,
206 ple-fusion reporter, fluc-mrfp-ttk (encoding firefly luciferase, monomeric red fluorescent protein, a
207 zacytidine treatment led to higher levels of firefly luciferase mRNA (RT-PCR) and protein (Western bl
208 represses the translation of non-adenylated firefly luciferase mRNAs and that mutations in two core
209 siRNA in skin was tested by co-delivering a firefly luciferase/mutant K6a bicistronic reporter const
210 ate-forming enzyme superfamily that includes firefly luciferase, nonribosomal peptide synthetases, an
211 and resolubilization of thermally denatured firefly luciferase occurred independently of NEF activit
212 n-replicating mammalian construct within the firefly luciferase open reading frame, or at the 5' or 3
213 Delivery studies with pDNA containing the firefly luciferase or beta-galactosidase reporter genes
215 e (5' NTS) positioned upstream of either the firefly luciferase or green fluorescent protein coding s
216 (DF; enhanced green fluorescent protein and firefly luciferase) or triple fusion (TF; monomeric red
217 on-ribosomal peptide synthetases (NRPS), and firefly luciferase, perform two half-reactions in a ping
218 n HIV-1-derived lentiviral vector expressing firefly luciferase permitting the use of bioluminescence
220 ns in cells and living animals, we optimized firefly luciferase protein fragment complementation by s
221 erization state of each mutant using a split firefly luciferase protein fragment-assisted complementa
222 ansfected with nonoxidized mRNA encoding the firefly luciferase protein were cultured in the presence
223 Plasmodium falciparum strain expressing the firefly luciferase protein, we present a luminescence-ba
225 and intein-mediated reconstitution of split firefly luciferase proteins driven by the interaction of
226 Hence, we constructed biotinylated fused firefly luciferase proteins, immobilized the proteins on
228 on proteins that could lead to split Renilla/firefly luciferase reporter complementation in the prese
229 ds carrying cytomegalovirus promoter driving firefly luciferase reporter gene (CMV-Fluc) and passaged
230 ation cassette, which amplifies AR-dependent firefly luciferase reporter gene activity, was injected
231 oying parasites with an integrated copy of a firefly luciferase reporter gene and a secondary flow cy
232 gnificantly reduce the expressions of both a firefly luciferase reporter gene and an ectopic MLH1 gen
233 inescent Arabidopsis plants that express the firefly luciferase reporter gene driven by the stress-re
236 th genome or a replicon (P/L) containing the firefly luciferase reporter gene in place of the capsid
237 Experiments using plasmid DNA containing the firefly luciferase reporter gene show that these complex
239 ow in transgenic mouse experiments using the firefly luciferase reporter gene that, despite relativel
240 ULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively repor
242 screen using Arabidopsis plants carrying the firefly luciferase reporter gene under the control of th
243 iana mutants for deregulated expression of a firefly luciferase reporter gene under the control of th
248 lated region and regulated the expression of firefly luciferase reporter in a dose-dependent manner.
251 ng furans situated 2, 5 or 12 bps apart in a firefly luciferase reporter plasmid caused a decrease in
255 because this factor inhibits expression of a firefly luciferase reporter under the control of the BAG
256 bioluminescence imaging using a constitutive firefly luciferase reporter, while TGFbeta signaling in
261 used with other split reporters (e.g., split firefly luciferase) should help to monitor different com
265 st created a mutant (mtfl) of a thermostable firefly luciferase (tfl) bearing the peroxisome localiza
268 estern Reserve vaccinia virus that expresses firefly luciferase to infect wild-type C57BL/6 and TLR3-
269 tein fragment complementation assay based on firefly luciferase to investigate dimerization of chemok
270 ATP as substrate, pyruvate kinase (PK), and firefly luciferase) to generate ATP, with measurement of
271 cules from the murine Hmox1 locus, including firefly luciferase, to allow long-term, non-invasive ima
272 trate that both the engineered and wild-type firefly luciferases tolerate much greater steric bulk at
273 nal siRNAs targeting a different site on the firefly luciferase transcript or endogenously expressed
274 A piggyBac donor plasmid modified to encode firefly luciferase under control of schistosome gene pro
275 to contain like green fluorescent protein or firefly luciferase under control of the cytomegalovirus
276 ering them with reporter plasmids expressing firefly luciferase under the translational control of th
277 amino acids were targeted to position 14 in firefly luciferase using an amber mutation or introducin
280 fusion proteins consisting of a thermostable firefly luciferase variant that catalyze yellow-green (5
282 As a proof-of-principle, photoregulation of firefly luciferase was achieved in live cells by caging
283 ured fibroblasts, in which the expression of firefly luciferase was driven by the promoter of the cir
284 refly luciferase enzyme activity with intact firefly luciferase was estimated for different fragment
287 etection of PP(i), using ATP sulfurylase and firefly luciferase, was adapted to monitor poliovirus 3D
288 nto the cytoplasm, measured by expression of firefly luciferase, was increased more than 10-fold by e
289 encapsulation of horseradish peroxidase and firefly luciferase, we demonstrate that this new protoco
290 transgenic T. cruzi Y luc strain expressing firefly luciferase, we prioritized the biaryl and N-aryl
292 nd carboxy-fragment (395-550 amino acids) of firefly luciferase were fused to amino-terminal of Apaf-
294 n (FVB/NJ-luc) that constitutively expressed firefly luciferase were transplanted to various implanta
295 They share 19 to 21% sequence identity with firefly luciferases, which produce light using ATP and t
296 the fusion of green fluorescent protein and firefly luciferase with either nonstructural protein 2 o
297 strategy to identify a novel split site for firefly luciferase with improved characteristics over pr
298 rter mouse line that pairs the expression of firefly luciferase with quantifiable expression of a hum
299 vity in HeLa cells of siRNA duplexes against firefly luciferase with substitutions in the guide stran
300 colons of mice administered an mRNA encoding firefly luciferase with ultrasound and the D-luciferin s
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。