コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 nto "head" and "core" domains connected by a flexible "linker".
2 ded into well-defined domains separated by a flexible linker.
3 omains (NTD and CTD) that are connected by a flexible linker.
4 ys to be glycosylated, which is present in a flexible linker.
5 rdomain motions in CaM-4Ca(2+), enabled by a flexible linker.
6 RfaH consists of two domains connected by a flexible linker.
7 er of two amphipathic helices connected by a flexible linker.
8 4 (Ffh) and a signal peptide connected via a flexible linker.
9 onding to the B and C domains connected by a flexible linker.
10 n which the two subunits were connected by a flexible linker.
11 e polymerase domain through a structured but flexible linker.
12 and the C-terminal domain (CTD), joined by a flexible linker.
13 ggesting a role as a relatively nonspecific, flexible linker.
14 n connected to the variable light chain by a flexible linker.
15 and POU(S), connected by a relatively short flexible linker.
16 o equivalent domains connected by a somewhat flexible linker.
17 catalytic and a lectin domain connected by a flexible linker.
18 nged in a predetermined order connected by a flexible linker.
19 reveals two globular domains connected by a flexible linker.
20 ed to the evolving library through an inert, flexible linker.
21 C-terminal QUA2 region by means of a highly flexible linker.
22 composed of IL-7 and HGFbeta connected by a flexible linker.
23 main and the Homeodomain connected by a long flexible linker.
24 and is separated into two short helices by a flexible linker.
25 Helix 1 is joined to helix 2 by a flexible linker.
26 -loop structure connected to rhodopsin via a flexible linker.
27 inal DNA-binding domain separated by a long, flexible linker.
28 posed of two globular domains connected by a flexible linker.
29 prises two functional domains separated by a flexible linker.
30 nal domain connected to the core domain by a flexible linker.
31 interact but are connected by an apparently flexible linker.
32 hat is connected to the FtsZ core by a long, flexible linker.
33 n), connected by an approximately 60-residue flexible linker.
34 consists of two domains connected by a long, flexible linker.
35 main connected to the other motifs through a flexible linker.
36 o a DNA-binding carboxy-terminal module by a flexible linker.
37 -terminal DNA-binding domain, separated by a flexible linker.
38 -terminal domain and its relationship to the flexible linker.
39 dent N and C-terminal domains connected by a flexible linker.
40 homopyrimidine PNA oligomers connected by a flexible linker.
41 domains, A1 and A2, that are connected by a flexible linker.
42 four times, and single motifs separated by a flexible linker.
43 two separate DNA-binding domains joined by a flexible linker.
44 and a POU-specific (POUs) domain joined by a flexible linker.
45 ossibility of coupling two binders through a flexible linker.
46 f two Ru(phen)2dppz(2+) moieties joined by a flexible linker.
47 ase domain and a helicase domain linked by a flexible linker.
48 and conserved modules, connected by a short flexible linker.
49 ain of cTnC, cNTnC and cCTnC) connected by a flexible linker.
50 nct N- and C-terminal domains separated by a flexible linker.
51 rate-binding module, which is attached via a flexible linker.
52 motif) domains, connected by a 20-amino acid flexible linker.
53 d thioester domain moieties linked by a long flexible linker.
54 ng paraquat-based macrocycle by folding of a flexible linker.
55 ch formed by portions of two helices and two flexible linkers.
56 gement of eight structured domains linked by flexible linkers.
57 three pleckstrin homology domains coupled by flexible linkers.
58 del of rigid filaments connected by multiple flexible linkers.
59 a(2)-microglobulin, and H chain connected by flexible linkers.
60 rivatives covalently linked via (Gly(3)-Ser) flexible linkers.
61 domains comprised of alpha-helices joined by flexible linkers.
62 rget-specific antibodies via nanometer-scale flexible linkers.
63 ate when they are tethered to a complex with flexible linkers.
64 , comprises a series of domains connected by flexible linkers.
65 d, but these domains are connected in Gag by flexible linkers.
66 ein containing discrete domains connected by flexible linkers.
67 horus ligands attached to the metals and the flexible linkers.
68 the contributions of the unfolded state and flexible linkers.
69 our understanding of the unfolded state and flexible linkers.
70 protein-protein interactions constrained by flexible linkers.
71 croglobulin, and heavy chain are attached by flexible linkers.
72 lengths, which have been proposed to act as flexible linkers.
73 120 and the ectodomain of gp41 are joined by flexible linkers.
74 for protein, DNA, or RNA and also including flexible linkers.
75 ng independently of each other at the end of flexible linkers.
76 mon chemical linkage groups through a set of flexible linkers.
77 cted to the N-terminal four-helix bundle via flexible linkers.
78 ed to those of two related cages with longer flexible linkers.
79 of independently folded domains connected by flexible linkers.
80 s C- or N-terminus via three- or ten-residue flexible linkers.
81 location of its head domains, facilitated by flexible linkers.
82 are connected to a tetrameric stalk through flexible linkers.
83 omposed of two discrete domains connected by flexible linkers.
84 All domains are connected by flexible linkers.
85 ms adopt many conformations enabled by three flexible linkers.
86 we created concatenated IP3R linked by short flexible linkers.
87 re of a repeat protein scaffold and avoiding flexible linkers.
88 a hybrid DNA gel containing stiff tubes and flexible linkers.
89 nits, arranged in a linear chain joined with flexible linkers.
91 dimeric neomycin-neomycin conjugate 3 with a flexible linker, 2,2'-(ethylenedioxy)bis(ethylamine), ha
92 ions: an EF-hand domain (PC2-EF, 720-797), a flexible linker (798-827), and an oligomeric coiled coil
93 our domains: the globular N-terminal core, a flexible linker, 8-9 conserved residues implicated in in
94 etal center is attached to the surface via a flexible linker (a propyl group), which allows the activ
95 ed of two globular domains linked by a short flexible linker: a catalytic domain and a ricin-like lec
96 I(Mtl)) comprises three domains connected by flexible linkers: a transmembrane domain (C) and two cyt
98 /-0.1) ns, respectively), are connected by a flexible linker (Ala147-Pro149), and do not give rise to
99 alently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substra
102 porating a C-terminal extension comprising a flexible linker and 10-19 of the N-terminal residues of
103 .2.2]octane core was achieved by attaching a flexible linker and a potential second pharmacophore via
105 he two RBDs are separated by a 12 amino acid flexible linker and do not interact with one another in
106 , another synaptic SNARE subunit, contains a flexible linker and exhibits an atypical conjoined Q(bc)
107 h is loosely connected to the MO domain by a flexible linker and is far away from the catalytic site,
109 uggesting that the domains are tethered by a flexible linker and lack a fixed orientation relative to
110 itionally, a short peptide that contains the flexible linker and RBD of Mre11 acts as an inhibitor of
111 r p53 binding to MdmX in the presence of the flexible linker and the intramolecular binding motif by
112 alyses to gain insights into the role of the flexible linker and the residues critical for the domain
113 n systems, even for systems that have highly flexible linkers and exhibit no domain-domain or domain-
116 A (2-methylphenoxy)acetic acid headgroup, a flexible linker, and a five-membered heteroaromatic cent
117 ssrA-tag binding and dimerization domain, a flexible linker, and a short peptide module that docks w
118 was then fused to the engineered stalk with flexible linkers, and a Factor Xa cleavage site was inse
119 tension probes displaying different ligands, flexible linkers, and fluorescent reporters, enabling th
120 us metal binding domains (MBDs) connected by flexible linkers, and these MBDs all can receive Cu(+) f
121 in the S. cerevisiae proteome indicated that flexible linkers are a common theme for PCNA-interacting
122 ded conformation in solution so that shorter flexible linkers are needed for larger peptide cores to
124 or interactions between domains connected by flexible linkers are predicted to be in the millimolar r
125 requires the use of a bulky chelator with a flexible linker attached to a Cys residue to bind Tb(3+)
126 mains, with the PLAT domains floating on the flexible linkers away from the main body of the dimer.
128 usion conformation, we have inserted a long, flexible linker between gp120 and gp41 in our stable gp1
131 vage in an intervening domain creates a long flexible linker between the thioester domain and the mac
134 D, C-terminal NADH, and FAD domains, and the flexible linker between them is essential for optimal in
136 nformational search space, combining it with flexible linkers between ligand binding repeats to inter
138 ophene skeleton, with a two-carbon (rigid or flexible) linker between the 5-position of the thiophene
139 d soluble gp140 construct, BG505.SOSIP, with flexible linkers can result in molecules that do not req
140 p tetramers, suggesting bifurcation into two flexible linkers clamped by inter-subunit covalent links
141 represents the hinge region positioned as a flexible linker connecting structurally isolated Fc and
142 s, consistent with a structural model with a flexible linker connecting the distal C-terminal domain
144 between the two dsRBDs that differs from the flexible linker connecting the two dsRBDs in the antivir
146 ar dynamics simulations on several GalNAc-T2 flexible linker constructs show altered remote prior gly
147 P8, attached to the body of the subunit by a flexible linker containing approximately 10 residues, is
148 ly preserved regions, mediated and guided by flexible linkers, defines the site of interaction with t
149 enetic fusion of two di-alpha-globins with a flexible linker demonstrated a decreased stability relat
150 ycosylation preferences, confirming that the flexible linker dictates the rotation of the lectin doma
151 hat the attachment of the donor domain via a flexible linker did not significantly alter the binding
153 on distance is determined by the length of a flexible linker domain that connects the two dsRBDs.
154 al DNA-binding modules rotate freely about a flexible linker, enabling them to contact several arrang
156 at the fourth bridgehead position provides a flexible linker for attachment of effector molecules suc
159 ludes two of the three CD4 sites even when a flexible linker has relieved the covalent constraint bet
160 r proteins with multiple domains tethered by flexible linkers have variable global architectures.
164 s unique to the full-length conjugate with a flexible linker, implying that the structural context of
166 by the N-34 and C-28 peptides connected by a flexible linker in place of the disulfide-bonded loop re
167 achment of peptides N-34 and C-28 by a short flexible linker in place of the normal disulfide-bonded
169 el-homology region, which are connected by a flexible linker in the heterodimer, communicate in such
170 t with success in quantifying the effects of flexible linkers in binding affinity enhancement and in
171 and enzymatic activity, and also the role of flexible linkers in mediating ubiquitin transfer and rea
173 orous metal-organic framework materials with flexible linkers in which the pore openings, as characte
174 the growing barbed end, we propose that the flexible linker influences the lifetime of this transloc
175 unoglobulin domains C1 and C2 connected by a flexible linker, interacts with the S2 segment of myosin
177 C-terminal DNA-binding domain connected by a flexible linker is in accord with the bipartite structur
181 hat, together with the top of the stalk, the flexible linker keeps H heads on a leash long enough to
182 ptor and with binding sites held together by flexible linkers, lead to nearly quantitative clustering
183 amino-terminal coiled coil of Vps22 and the flexible linker leading to the ubiquitin-binding NZF dom
184 UBA) that have been thought to be joined by flexible linkers like beads on a string, with the RRM an
186 conformational heterogeneity and relies on a flexible linker located between the catalytic and the le
189 signed antiviral nanoparticles with long and flexible linkers mimicking HSPG, allowing for effective
190 in the monomeric protein are separated by a flexible linker, must communicate with each other at som
191 ir degree of magnetic alignment, even with a flexible linker of 18 residues, exhibiting D(a) values o
193 is linked to the N terminus of another by a flexible linker of ten glycine/serine residues, has been
196 known atomic structure possibly connected by flexible linkers of known sequence, are assembled accord
198 alphaABD was joined with cadherin through a flexible linker or if it was replaced with an actin-bind
199 CG2 proteins joined either with or without a flexible linker peptide were expressed at the plasma mem
201 quantitative understanding of the role that flexible linkers play in intramolecular binding and prov
202 se gels; however, fusion of CaM to MBP via a flexible linker provides sufficient restriction of trans
203 ttached to ss(2)-microglobulin (ss(2)M) by a flexible linker (Qa-1 determinant modifier (Qdm)-ss(2)M)
204 e mainly to a considerably longer N-terminal flexible linker region (144 aa longer than in human).
205 ytically competent form of CelB, locking the flexible linker region and cellulose-binding domain, has
207 idues 118-194 contain the Hc alpha-helix and flexible linker region controlling transition of syntaxi
208 hese results indicate that the length of the flexible linker region is critical for interaction of ub
210 Additionally, a Syntaxin1A mutant lacking a flexible linker region that allows NRD movement abolishe
211 in composed of an N-terminal domain (NTD), a flexible linker region, and a C-terminal domain (CTD).
212 x 2 from Chaetomium thermophilum (ctPRC2), a flexible linker region, but not the H3K27M cancer mutant
213 ransmembrane helix (helix-1) connected via a flexible linker region, including a Glu-Tyr-Arg (EYR) mo
219 nsive structural transition observed in the "flexible linker" region 74-82 of the central helix upon
223 roles is the fact that unfolded proteins and flexible linkers sample many different conformations.
224 -coil domain to the protein through a short, flexible linker sequence, with the approximate length of
225 cular details of their interactions with the flexible linker sequences and enabled construction of fu
227 Moreover, replacing the core aromatic with a flexible linker significantly improved selectivity.
228 omprised of three domains partitioned by two flexible linkers termed interdomain regions (IDRs).
229 HMG box domains, A and B, linked by a short flexible linker that allows the two domains to behave in
230 RRE function, provided they are joined by a flexible linker that allows the two domains to face each
231 stems and shown that DnaG interacts with the flexible linker that connects the N- and C-terminal doma
232 r(81) in the central sequence functions as a flexible linker that connects two structurally independe
233 a bipartite DNA binding domain divided by a flexible linker that enables them to adopt various monom
236 show that the two domains are connected by a flexible linker that is short enough to keep the binding
237 tween the minimal DNA-binding domain and the flexible linker that joins the DNA-binding domain to the
238 the additional deletion of the highly acidic flexible linker that lies between RBD and the main body
239 th the two domains connected by a 24-residue flexible linker that passes through the substrate-bindin
240 ned N- and C-terminal modules separated by a flexible linker that swivels by approximately 30 degrees
241 thalene diimide (NDI) units are connected by flexible linkers that alternate between the minor and ma
242 suggests that multivalent ligands containing flexible linkers that are longer than the spacing betwee
244 mprising both CBM2bs covalently joined via a flexible linker, there was an approximate 18-20-fold inc
245 , and that the insertion of a very large and flexible linker three or four bases upstream of the star
246 f BioID2 can be considerably modulated using flexible linkers, thus enabling application-specific adj
250 nding human antibody domains fused through a flexible linker to an engineered one-domain soluble huma
251 nsists of a C-terminal domain connected by a flexible linker to an N-terminal AdoMet-binding domain.
252 omain having to undergo a large shift on its flexible linker to bind tRNA(Tyr) or the intron RNA on e
253 ubsequently conjugated these aptamers with a flexible linker to construct ultra-high-affinity bidenta
254 properties are covalently linked with a long flexible linker to create a bivalent ligand with signifi
256 C terminus of NpSRII is connected by a short flexible linker to NpHtrII is active in phototaxis signa
258 (ZA; the active ingredient in Relenza) via a flexible linker to poly-l-glutamine (PGN) enhances the a
259 they could be linked with a nanometer-scale flexible linker to produce bivalent ligands with improve
262 ary of 9- and 10-mer peptides tethered via a flexible linker to the N terminus of beta2 microglobulin
263 sensory rhodopsin I (SRI) is connected by a flexible linker to the N-terminus of its transducer (Htr
264 onis sensory rhodopsin II (SRII), fused by a flexible linker to the two transmembrane helices of its
267 (127 amino acids (aa)] joined via two tandem flexible linkers to the C-terminal Enzyme I-like domain
268 solvent-compatible, must be tethered by the flexible linkers to the N-terminal domain for the produc
269 ng two FokI nuclease domains, connected by a flexible linker, to a ZFP with an N-terminal mitochondri
270 length up to propyl (C3), with longer, more flexible linkers (up to C5) providing no additional bene
271 assembly, as the insertion of a 5-amino-acid flexible linker upstream of the zipper domain leads to b
273 awS1 at multiple positions, and in situ, its flexible linker was removed, yielding fully mature heter
275 ity of bivalent ligands with nanometer-scale flexible linkers, we constructed aptamer-based bivalent
276 nonraft transmembrane sequence containing a flexible linker were expressed in a cell line derived fr
277 enosine or 2'-deoxyadenosine units joined by flexible linkers were studied by femtosecond transient a
278 ins two alpha-helical regions connected by a flexible linker, whereas the N-terminus remains unstruct
279 e N- and C-terminal domains are joined via a flexible linker which enables them to function independe
280 , comprises two domains separated by a short flexible linker, which allows CaM to assume a wide range
281 ding domains (POUS and POUHD) connected by a flexible linker, which interact with DNA in a bipartite
282 rming oligonucleotides (TFOs) connected by a flexible linker, which spans a single turn of DNA helix.
283 ein with seven globular domains connected by flexible linkers, which enable substantial interdomain m
284 n (CTD) comprising four alpha-helices, and a flexible linker with a 310-helix connecting the two stru
285 Replacement of the acidic residues in the flexible linker with alanine elevates the Mre11 activity
286 ity density for the end-to-end vector of the flexible linker with L residues to have a distance d(0).
287 be effective in binding, and that the use of flexible linkers with lengths somewhat greater than the
288 re prepared, each labeled via nanometer size flexible linkers with short complementary oligonucleotid
290 own to interact with RNA polymerase, and two flexible linkers within the C-terminal domains may assis
291 B-34, but also reveal roles for the two long flexible linkers within the protein fragment, a result t
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。