コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 ains and at least one additional site on the flexible loop.
2 ve site of the enzyme and a highly conserved flexible loop.
3 otein consists of two domains connected by a flexible loop.
4 consist of two alpha-helices connected by a flexible loop.
5 ytic residues, His-101, is located on such a flexible loop.
6 aining a ligand-binding domain inserted in a flexible loop.
7 inding depends on the integrity of the whole flexible loop.
8 strate RNA forms a compact helix capped by a flexible loop.
9 d highly mobile, revealing the presence of a flexible loop.
10 tal forms with two other orientations of the flexible loop.
11 ate N- and C-terminal domains connected by a flexible loop.
12 ces Tyr-342 at the center of a 17-amino acid flexible loop.
13 binding site is a vicinal cysteine pair in a flexible loop.
14 points away from Gtbetagamma, toward a large flexible loop.
15 nd E2 enzymes in general, is buttressed by a flexible loop.
16 ntiparallel beta-strands connected by a long flexible loop.
17 48H mutations are in the same IN polypeptide flexible loop.
18 strong coiled-coil regions interspersed with flexible loops.
19 s with residues that are part of or near the flexible loops.
20 ist of four CCP modules connected with short flexible loops.
21 on opposite sides of the beta-clam and three flexible loops.
22 trate accessibility is regulated by adjacent flexible loops.
23 beta-hairpin region, which is flanked by two flexible loops.
24 ts of secondary structure and at the base of flexible loops.
25 nal three-blade beta-propeller tip domain by flexible loops.
27 test this, we replaced residues 36-55 in the flexible loop 2 with an artificially flexible glycine ch
28 uccinyl moiety pointing towards the end of a flexible loop 3, which adopts different structural confo
29 ations in the N-terminal subdomain or in the flexible Loop 4 of DBL2betaPF11_0521, although both subs
30 ges in a phosphoribosyltransferase (PRTase) "flexible loop", a "glutamine loop", and a C-terminal hel
31 e binding of Mn(2+) followed by UDP-Gal, two flexible loops, a long and a short loop, change their co
32 attacking Tyr342 nucleophile is located on a flexible loop about 20 angstroms from a basic groove tha
33 conserved glutamate and lysine residues in a flexible loop above the substrate binding pocket have be
35 he apo-form of GpgS, we have observed that a flexible loop adopts a double conformation L(A) and L(I)
36 o the enzyme active site, interacts with the flexible loop, alters loop conformation, and affects the
37 f regions with latent structure connected by flexible loops, an architecture with implications for bi
38 conserved residues in the Phe(139)-Gln(146) flexible loop and abutting Ser(147)-Val(165) amphipathic
39 n HIV RT, which form part of the beta3-beta4 flexible loop and harbor many of the currently known mut
40 ion is ascribed to the closing of the PRTase flexible loop and is likely the rate-limiting step in th
41 aquaticus reveals a deep groove bounded by a flexible loop and lined with side chains of conserved hy
44 d proteins, associated with rearrangement of flexible loops and amino-terminal extensions that partic
45 all plasticity of the cytoplasmic helix, the flexible loop, and part of the transmembrane domain (res
46 the residues in the cytoplasmic domain, the flexible loop, and the first ten residues of the transme
47 ere useful in guiding mutation candidates to flexible loops, and had the potential to be used for oth
48 Two fragments in each subunit, a very highly flexible loop (approximately 20 amino acids) that forms
50 of protein structural elements, particularly flexible loops, are intimately linked with diverse aspec
52 and A-A ring pair model in the region of the flexible loop at small radius that might be an indicatio
53 ences were observed in the conformation of a flexible loop at the active site and in the hydrogen bon
54 positioning of the residues of an important flexible loop at the active site, which was previously u
55 an alpha-helix at the N-terminal half and a flexible loop at the C-terminal half, features not prese
56 xcept Met(208), which appears to reside in a flexible loop at the entrance/exit of the ligand cavity.
57 to offset the energy required to remobilise flexible loops at the end of the reaction cycle, and hen
58 ong these molecules, particularly to a small flexible loop between A-184 and G-191 (which has some of
59 izing interactions with residues in a highly flexible loop between beta-strands V and VI are only obs
61 tation of cationic residues within the large flexible loop between residues 9-18, thus strengthening
62 with the full-length Bid structure, a longer flexible loop between tBid helix alpha4 and alpha5 was o
63 itical for this conformational change to the flexible loop between the minimal DNA-binding domain and
64 The second and third helices and the long, flexible loop between them form the helix-turn-helix mot
67 mutations at positions 140 and 148 in the IN flexible loop can account for the phenotype of RAL-resis
68 st under all conditions, suggesting that the flexible loops can transition with relative ease between
73 of unphosphorylated Noxa is housed within a flexible loop connecting two antiparallel beta-sheets, f
75 ins have implied that the translocation of a flexible loop containing a highly conserved Ser-Tyr dipe
77 r Mg(2+) coordination and positioning of the flexible loop containing the conserved HMGCL "signature"
78 ith approximately 20 residues connected by a flexible loop containing the ferredoxin consensus sequen
79 rthermore, we report the conformation of the flexible loop containing the furin cleavage site and sho
80 folding of CRABP I, which indicates that the flexible loop containing this residue is passive in the
84 site to potentially "bridge" PP2A to Bcl2's flexible loop domain containing the target serine 70 pho
85 rylation at one or multiple sites within the flexible loop domain of Bcl2 not only stimulates antiapo
86 Altogether, the results suggest that the flexible loop domain of polymerase beta plays a major ro
87 h mimics Ser(70) site phosphorylation in the flexible loop domain, potently enhances chemoresistance
90 ues from the C-terminus of one subunit and a flexible loop excluded from the LbetaH domain of an adja
92 with elastic network model, we find that the flexible loop explores a conformational space much large
93 in-1 (NBD-1) and -2 (NBD-2), which reside in flexible loops extending into the central pore of the Cl
100 become structured in the ternary complex: a flexible loop forms intimate contacts with bound MLL, an
101 ium enzyme, combined with the closure of the flexible loop from one subunit into the active site of t
102 ike loop conformations and in preventing the flexible loops from being trapped in nonfunctional confo
103 depending on the closed or open state of the flexible loop gating the cavity, the binding of (K+ or s
104 e +2 depending on the substrate, and thus, a flexible loop (Glu-334-His-343) is essential in binding
107 mation, the axial histidine belonging to the flexible loop (His63) was replaced with an alanine, and
108 ely charged arginine residues located in the flexible loop II were found to be crucial for rWTX inter
109 include additional effects at amides in the flexible loop II-III and helix III, which have been prop
110 ization domain (domain 2) containing a large flexible loop implicated in membrane insertion; a small
112 demonstrate that V1H binds to the C-terminal flexible loop in Nef from HIV-1 and to the medium chain
114 fferent DNA symmetries through movement of a flexible loop in one of the protein subunits may represe
119 termini of target proteins or inserted in a flexible loop in the middle of a target protein for site
120 of transposition in vitro and suggest that a flexible loop in the MuA protein required for DNA recogn
122 gs conclusively identify a role for the AztC flexible loop in zinc acquisition from the metallochaper
124 These two regions correspond to the two flexible loops in Nef as predicted by solution NMR analy
125 ed by conserved tyrosine residues located in flexible loops in nucleotide-binding domain-1 that exten
127 s been debate over the specific roles of the flexible loops in substrate specificity and catalysis in
128 y is hydrogen bonded to Arg 24 in one of the flexible loops in the capping domain, thereby providing
131 reveals a DNA-binding surface surrounded by flexible loops, indicating considerable conformational c
132 ces at the active site entrance, including a flexible-loop insertion, which may account for the speci
133 dies on Nef mutant viruses revealed that the flexible loop is essential for optimal viral infectivity
136 ced DNA-binding cooperativity in vitro and a flexible loop L1 as seen in the crystal structure of the
139 karyotic UGMs is that AfUGM contains a third flexible loop (loop III) above the si-face of the isoall
140 ded antiparallel beta-strands within a small flexible loop may also benefit from preorganization of t
141 ether, these results are consistent with the flexible loop mediating the slow-onset step of allosteri
143 Upon substrate binding, Trp314 in the small flexible loop moves towards the catalytic pocket and int
144 e site amino acids and one amino acid on the flexible loop (N149) to probe their roles in SiRHP activ
149 gs suggest a check-valve mechanism, with the flexible loops obstructing the channel by interacting wi
151 large conformational changes of a peripheral flexible loop occur in the presence of a mechanistic cyc
152 cherichia coli thioredoxin binds to a unique flexible loop of 71 amino acid residues, designated the
153 gions of PA, mainly the helix alpha4 and the flexible loop of amino acids 51 to 74, affect the activi
154 e shared by the metallo-beta-lactamases is a flexible loop of amino acids that extends over their act
155 icate that the conserved residue Q146 in the flexible loop of HIV-1 integrase is critical for product
156 eucine and diacidic motifs in the C-terminal flexible loop of Nef have been shown to mediate binding
158 L/I)-type dileucine motif in the C-terminal, flexible loop of Nef, which mediates binding to the clat
160 subdomains of actin; Val-43 is located in a flexible loop of subdomain 2, Ala-138 is near a hydropho
165 a region that includes the alphaA helix and flexible loop of the Galpha(q)-binding domain as necessa
169 d to identify mutation candidates within the flexible loops of Escherichia coli transketolase (TK).
175 in a new mode of CQ binding and closure of a flexible loop (Phe(126)-Leu(136)) over the active site.
177 d those important to the organization of two flexible loops, previously implicated as regulators of s
178 bic binding pocket and within the peripheral flexible loop proved essential to the hydrolytic activit
179 trates, combined with the positioning of the flexible loop, provides a clear picture of a catalytical
180 This leads to the proper orientation of a flexible loop proximal to the dimer-dimer interface that
182 motif (found in the sequence PNAIG) within a flexible loop region (loop 2) within the central core re
186 binding by MpPR-1 requires the presence of a flexible loop region containing aromatic amino acids, th
187 e studies with E. coli gamma-GCS implicate a flexible loop region in GSH binding, chimeras of S. agal
189 UCUCC between nucleotides 216 and 220 in the flexible loop region of the revised secondary structure
190 ulfide bonds and multiple conformations of a flexible loop region that is thought to be involved in l
191 d, we find that RCC1 uses a conformationally flexible loop region we have termed the switchback loop
192 bably PLC homodimerization, that require the flexible loop region, as is consistent with the dimeric
198 -binding residues were identified in the two flexible loop regions of MutH, although similar loops in
199 tionship between the amino acid sequences in flexible loop regions of native states and the correspon
202 uctural perspective, the enzyme utilizes two flexible loop regions to sequester and position the subs
206 ell death in a mechanism regulated by Bcl2's flexible loop regulatory domain (FLD), since purified p5
207 ons (D163G, T166I and F170L), localized to a flexible loop, rescue the folding of several tsf coat pr
208 enerated ensembles are observed for the most flexible loop residues and backbone angles connecting th
210 n reveals the structural roles for invariant flexible loop residues Ser103 and Tyr104 and supports a
212 NMR relaxation experiments indicated that a flexible loop (residues 225-250) adopted a more rigid an
213 unctional role in allosteric regulation of a flexible loop (residues 280-288) located near the active
214 , PON1 is a six-bladed beta-propeller with a flexible loop (residues 70-81) covering the active site.
215 ne C(5) methyltransferase that reorganizes a flexible loop (residues 80-100) upon binding cognate DNA
218 " model, wherein residues 133-146 comprise a flexible loop segment that confers to apoA-I an intrinsi
219 GCS-GS were made containing gamma-GCS domain flexible loop sequences from Enterococcus faecalis and P
220 ast pyruvate decarboxylase (YPDC) revealed a flexible loop spanning residues 290 to 304 on the beta-d
226 ipally responsible for oxoG recognition is a flexible loop, suggesting that conformational mobility i
227 i dihydrofolate reductase (DHFR) has several flexible loops surrounding the active site that play a f
228 ively charged lysine residue is located in a flexible loop that behaves as a lid to the active site,
229 feature with other members of this family, a flexible loop that closes over the active site during ca
230 ed for adnectin1 and adnectin2 binding, is a flexible loop that connects two beta-strands in the cyto
231 onization of His-224, a residue located in a flexible loop that contributes to the S1' binding pocket
232 and R153 play a role in the structure of the flexible loop that controls anion binding and release.
233 ffects of these mutations on movement of the flexible loop that enables general acid catalysis are pr
234 acids are located within or neighboring the flexible loop that forms part of the pore to the ligand-
235 sine residue (Lys-48) was found in the first flexible loop that functions in catalysis together with
237 an Hje:DNA junction complex, highlighting a flexible loop that interacts intimately with the junctio
239 site, Phe(147) is located in a structurally flexible loop that may be involved in BlcR oligomerizati
241 into position for catalysis by movement of a flexible loop that occurs upon binding of substrate.
242 mediated by a conformational transition of a flexible loop that opens to make the binding site access
243 e active site cysteine Cys(328) resides in a flexible loop that potentially influences both the forma
244 nduces a dramatic conformational change in a flexible loop that swings over the C-terminus of NEDD8 l
245 ization of phosphoribosyltransferase domain "flexible loop" that leads to formation of the channel pe
246 this protein can form a tetramer and that a flexible loop (the "multifunctional loop") contacts boun
248 , this Trp is a hinge residue in a conserved flexible loop (the WPD-loop) that must close during cata
249 c importance of residues located on a highly flexible loop, the enzyme is required to undergo a subst
252 the monomers affect the conformation of two flexible loops, the functionally important "flap" (resid
255 g results give insight as to the role of the flexible loop Thr and Tyr in the catalytic mechanism.
257 llowed for the placement of the Gly97-Ser108 flexible loop, thus revealing its role in binding of thi
258 may affect the stability and closure of the flexible loop to enhance inhibitor (or substrate) bindin
260 us clearly demonstrated stabilization of the flexible loop upon binding of both PRPP and guanine and
261 structural model in which rearrangement of a flexible loop upon binding of the correct peptide substr
263 the inhibitor to both Thr20 and Tyr34 of the flexible loop was observed providing strong evidence tha
264 ne residues located in the C-terminus of the flexible loop which connects A and B beta-sheets of the
266 ackbone contacts mediated by residues in the flexible loops which link secondary structure elements i
267 amics simulations highlight the role of this flexible loop, which adopts a more stable conformation u
268 n a second active-site loop, termed the long flexible loop, which is predicted to close over the acti
269 vely charged binding surface that includes a flexible loop, which is unique to the IPSE/alpha-1 cryst
270 gely confined to one face of this fold and a flexible loop, which together form a large positively ch
271 cytochrome P450 and cytochrome c It formed a flexible loop, which transiently interacts with the flav
272 ite is located in the hinge region of a long flexible loop, which upon Mn(2+) and UDP-Gal binding cha
274 located at one of the hinge positions of the flexible loop (WpD loop), which is essential for catalys
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。