戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 RNA to a specific location-in this case, the focal adhesion complex.
2 g its enzyme activity acts on targets in the focal adhesion complex.
3                       Cas is a member of the focal adhesion complex.
4 e GIT2-alphaPIX-PAK complex, an IS-localized focal adhesion complex.
5 adhesion kinase (FAK) and disassembly of the focal adhesion complex.
6 actor (C3G) and inducibly associate with the focal adhesion complex.
7 , paxillin, and talin and dissolution of the focal adhesion complex.
8 roundings through modulating the activity of focal adhesion complexes.
9 hed regulators of the actin cytoskeleton and focal adhesion complexes.
10 ional architecture and nanoscale dynamics of focal adhesion complexes.
11 slocation to the nucleus and localization in focal adhesion complexes.
12 owered by uncharacterized motor proteins and focal adhesion complexes.
13 ne by controlling F-actin polymerization and focal adhesion complexes.
14 d in rapid activation of vinculin-containing focal adhesion complexes.
15 x and the clustering of these receptors into focal adhesion complexes.
16 5 leads to Rho kinase-dependent formation of focal adhesion complexes.
17 lar S-adenosylhomocysteine and disruption of focal adhesion complexes.
18 d spleen tyrosine kinase and paxillin within focal adhesion complexes.
19 ctin cytoskeleton, leads to the formation of focal adhesion complexes.
20 lusters a multi-subunit signaling complex at focal adhesion complexes.
21 oskeletal architecture, and the formation of focal adhesion complexes.
22 hosphorylation of proteins in the associated focal adhesion complexes.
23 associate with cytoskeletal scaffolds within focal adhesion complexes.
24                     PAK also fosters loss of focal-adhesion complexes.
25 y be participating in the disassembly of the focal adhesion complex and actively interrupting surviva
26 is associated with the beta1 integrin in the focal adhesion complex and as such is a candidate kinase
27 the focal adhesion kinase and its associated focal adhesion complex and the consequent acquisition of
28 ells thereby inhibiting adequate turnover of focal adhesion complexes and cell migration.
29         LPA stimulation targets TRIP6 to the focal adhesion complexes and promotes c-Src-dependent ph
30                          Both integrin-based focal adhesion complexes and receptor tyrosine kinases h
31       ADP-ribosylation of vinculin disrupted focal adhesion complexes and redistributed vinculin to t
32 sses Hic-5/ARA55, which is localized both at focal adhesion complexes and within the soluble cytoplas
33 f focal adhesion molecules, formation of the focal adhesion complex, and activation of Rho-GTPases.
34 se (pp125FAK), an important component of the focal adhesion complex, and identify pp125FAK as a novel
35 , RA promotes formation of stress fibers and focal adhesion complexes, and activation of ERK1/2, JNK1
36 ng the restoration of cell polarity, typical focal adhesion complexes, and longitudinal F-actin stres
37  they support membrane dynamics, turnover of focal adhesion complexes, and random cell motility.
38                                              Focal adhesion complexes are plasma membrane-associated
39  1/2 phosphorylation, suggesting that intact focal adhesion complexes are required for GPCR-induced m
40 pled with the formation of stress fibers and focal adhesion complexes, are proposed to have a signifi
41 HSP20 led to loss of actin stress fibers and focal adhesion complexes as demonstrated by immunocytoch
42 of the time- and site-specific regulation of focal adhesion complex assembly and disassembly required
43 se and is mediated by an accelerated rate of focal adhesion complex assembly and disassembly.
44 mediated, in part, by an accelerated rate of focal adhesion complex assembly and disassembly.
45                 Using specific inhibitors of focal adhesion complex assembly and receptor tyrosine ki
46 tin detection in stress fibers and promoting focal adhesion complex assembly and redistribution.
47 he signaling pathway by which VEGF regulates focal adhesion complex assembly by examining the signali
48  studies define a mechanism for HIV-1 Tat in focal adhesion complex assembly in HBMECs via activation
49 mechanism for the regulatory role of VEGF in focal adhesion complex assembly in HBMECs via activation
50 man skin equivalents, in part by attenuating focal adhesion complex assembly, and prevented and rever
51 monstrated that HGF caused a condensation of focal adhesion complexes at the leading edges of cell pr
52 signaling and cytoskeletal components of the focal adhesion complex; binding of paxillin, but not pp1
53            Given the central position of the focal adhesion complex, both physically in coupling inte
54 6 contributes to the integration of NCAM1 in focal adhesion complexes but, unlike cells lacking PrP,
55     We examine the process of expansion of a focal adhesion complex by which a biological membrane co
56 sactivation of receptor tyrosine kinases and focal adhesion complexes by G-protein-mediated signals,
57                  To assess the importance of focal adhesion complexes, cardiomyocytes were infected w
58 overexpression up-regulates the formation of focal adhesion complexes compared with control cells.
59 h the expression and/or activation status of focal adhesion complex components such as Src, FAK, and
60         ACK2 was found to associate with the focal adhesion complex components talin and vinculin, bu
61 l-adhesion structures and can cleave several focal-adhesion complex components, including FAK.
62 elial cell (HBMEC) integrity and assembly of focal adhesions, complexes comprised of scaffolding and
63                Analysis of components of the focal adhesion complex demonstrates rapid cleavage of th
64                                  Remnants of focal adhesion complexes dissociate from the cell cortex
65  glycoprotein that regulates the activity of focal adhesion complexes, facilitating the SMC migration
66 grin receptors and inducing the formation of focal adhesion complexes (FACs).
67 or the RhoA-regulated actin stress fiber and focal adhesion complex formation and that Rac1 is involv
68  significant change in actin stress fiber or focal adhesion complex formation in response to serum or
69 s evident by morphologic changes and reduced focal adhesion complex formation.
70                         FAK translocation to focal adhesion complex in endothelial cells guided by ac
71  spread less well, and formed poorly defined focal adhesion complexes in comparison to the X2C2 and X
72 ces the formation of actin stress fibers and focal adhesion complexes in Galpha13-expressing NIH3T3 c
73  data presented indicate that disassembly of focal adhesion complexes in HSCs is pivotal for hepatic
74 sducers, as suggested by rapid remodeling of focal adhesion complexes in response to flow.
75 t protein- (GFP-) tagged p95PKL localized to focal adhesions/complexes in CHO.K1 cells.
76                           This activation is focal adhesion complex-independent and is accompanied by
77 eport the NMR structure of an extremely weak focal adhesion complex (K(D) approximately 3 x 10(-3) M)
78 ptors with extracellular matrix (ECM) at the focal adhesion complex may regulate endothelial cell sha
79  kinase and Cas phosphorylation - markers of focal adhesion complex-mediated Crk-dependent signaling
80  filaments (stress fibers) and of associated focal adhesion complexes of adherent monolayer cells in
81 lical vein endothelial cells (HUVECs) formed focal adhesion complexes on RGD- and RGD and bFGF-immobi
82 ants effectively adhered, spread, and formed focal adhesion complexes on type I collagen matrices.
83 ASP during cell spreading may be involved in focal adhesion complex organization and actin dynamics.
84 , immunohistochemical analysis revealed that focal adhesion complexes persist at the distal tips of e
85 ependent association of inactive ERK and the focal adhesion complex protein paxillin.
86                                  Talin1 is a focal adhesion complex protein that regulates integrin i
87 tions in fibroblasts and identified specific focal adhesion complex proteins whose tyrosine phosphory
88 cell survival signals via phosphorylation of focal adhesion complex proteins, such as focal adhesion
89 is of PARP14 shows that it is a component of focal adhesion complexes required for proper cell motili
90  epithelial cells requires components of the focal adhesion complex signaling pathway, focal adhesion
91 lls, Semaphorin 4D promotes the formation of focal adhesion complexes, stress fibers, and the phospho
92 phorylation and association of components of focal adhesion complexes such as the related adhesion fo
93  integrin-associated signal molecules in the focal adhesion complex that are responsible for propagat
94  influence intracellular biochemistry within focal adhesion complexes that form at the site of integr
95 ution of alpha-actinin and vinculin from the focal adhesion complex to the Triton X-100-soluble fract
96  of talin-1, which links integrin-containing focal adhesion complexes to the actin cytoskeleton, faci
97 o-induced actin-containing stress fibres and focal-adhesion complexes, to which the ends of the stres
98 s in order to further understand its role in focal adhesion complex turnover and actin organization.
99 ased cellular calcium increases polycystin-1 focal adhesion complexes versus polycystin-1 adherens ju
100 ating engagement of the cytoskeleton, but no focal adhesion complex was formed.
101                                              Focal adhesion complexes were identified by vinculin imm
102                             Vinculin-stained focal adhesion complexes were significantly smaller and
103 ) exhibit delayed formation of filopodia and focal adhesion complexes when freshly plated.
104 chemical analysis of v-CrkPC12 cells reveals focal adhesion complexes which are formed at the periphe
105 e formation of contractile stress fibers and focal adhesion complexes while a close relative, Rac, in
106 on blocked TCDD/EGF stimulation of clustered focal adhesion complexes without affecting either sustai

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top