戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1  folates as N5-methyltetrahydrofolate and N5-formyltetrahydrofolate.
2  pemetrexed activity in growth medium with 5-formyltetrahydrofolate.
3 a complex with uridine monophosphate and N-5-formyltetrahydrofolate.
4  conversion of methenyltetrahydrofolate to 5-formyltetrahydrofolate.
5 ersion of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate.
6 as catalytically inactive and did not bind 5-formyltetrahydrofolate.
7 lysis of 5, 10-methenyltetrahydrofolate to 5-formyltetrahydrofolate.
8 (MTF) located in mitochondria and uses N(10)-formyltetrahydrofolate (10-formyl-THF) as the formyl don
9 hydrofolate dehydrogenase (FDH), converts 10-formyltetrahydrofolate (10-formyl-THF) to tetrahydrofola
10  explained by the rapid oxidation of (6S)-10-formyltetrahydrofolate (10-HCO-THF), which is produced b
11 ligase (5-FCL) catalyzes the conversion of 5-formyltetrahydrofolate (5-CHO-H(4)PteGlu(n)) to 5,10-met
12 hermodynamic parameters for the binding of 5-formyltetrahydrofolate (5-CHO-H4PteGlun) and its polyglu
13                                       With 5-formyltetrahydrofolate (5-CHO-THF) as the folate source
14 tant L1210 clonal variant in which MTX and 5-formyltetrahydrofolate (5-CHO-THF) influx was markedly d
15                                            5-Formyltetrahydrofolate (5-CHO-THF) is formed by a side r
16                                            5-Formyltetrahydrofolate (5-CHO-THF) is formed via a secon
17                                            5-Formyltetrahydrofolate (5-formylTHF) is the only folate
18 of the tight-binding dimer are occupied by 5-formyltetrahydrofolate (5-formylTHF), whose N5-formyl ca
19                               Transport of 5-formyltetrahydrofolate (5-FTHF) into primary cultured ce
20 inistered unnatural carbon-6 isomers, (6R)-5-formyltetrahydrofolate (5-HCO-THF) and (6S)-5,10-metheny
21  respiration of mitochondria, whereas (6S)-5-formyltetrahydrofolate (5-HCO-THF) was inactive.
22 mide ribonucleotide transformylase (GART; 10-formyltetrahydrofolate:5'-phosphoribosylglycinamide form
23 ured by 5-methyltetrahydrofolate (5MeTHF), 5-formyltetrahydrofolate (5FoTHF), and folic acid concentr
24 ahydrofolate dehydrogenase (FDH) converts 10-formyltetrahydrofolate, a precursor for nucleotide biosy
25                           Binding of an N-10-formyltetrahydrofolate analogue was modeled into the str
26 rms of folates - 5-methyltetrahydrofolate, 5-formyltetrahydrofolate and 10-formyltetrahydrofolate - t
27 e domain that removes a formyl group from 10-formyltetrahydrofolate and a NADP(+)-dependent dehydroge
28 FS) is the only enzyme known to metabolize 5-formyltetrahydrofolate and catalyzes the conversion of 5
29 approximately 50% decrease in the EC50 for 5-formyltetrahydrofolate and folic acid and the MTX IC50 r
30        The GART activity of GART requires 10-formyltetrahydrofolate and has been a target for anti-ca
31  for (6S)-N5-methyltetrahydrofolate, (6S)-N5-formyltetrahydrofolate and methotrexate compared to the
32 xymethyltransferase-catalyzed formation of 5-formyltetrahydrofolate, and 5, 10-hydroxymethylenetetrah
33 greater proportions of pteroylmonoglutamate, formyltetrahydrofolate, and 5,10-methenyltetrahyrofolate
34  resulted in augmentation of methotrexate, 5-formyltetrahydrofolate, and 5-methyltetrahydrofolate ini
35 E45K all 1) increased carrier affinity for 5-formyltetrahydrofolate approximately 4-fold, 2) increase
36        The Km values for AICAR and (6R,6S)10-formyltetrahydrofolate are 16.8 microM +/- 1.5 and 60.2
37 ormyltransferase, which, like MTF, use N(10)-formyltetrahydrofolate as a formyl group donor.
38 ther antifolates in HepG2 cells grown with 5-formyltetrahydrofolate at physiological pH.
39 nal Rossmann fold domain containing the N-10-formyltetrahydrofolate binding site and a C-terminal sub
40 (GAR binding region) and the C-terminal (N10-formyltetrahydrofolate binding) region of PurU.
41 ling studies, is known to be the site of N10-formyltetrahydrofolate binding.
42 hile the formyl group is transferred from 10-formyltetrahydrofolate by direct nucleophilic attack by
43 rahydrofolate synthase (MTHFS; also called 5-formyltetrahydrofolate cyclo-ligase; EC 6.3.3.2) activit
44                                            5-Formyltetrahydrofolate cycloligase (5-FCL) catalyzes the
45                     We have identified the 5-formyltetrahydrofolate cycloligase gene (FTL_0724) as be
46                                           10-Formyltetrahydrofolate dehydrogenase (10-FTHFDH) is a fo
47               The liver cytosolic enzyme, 10-formyltetrahydrofolate dehydrogenase (FDH) (EC 1.5.1.6)
48                                           10-Formyltetrahydrofolate dehydrogenase (FDH) catalyzes an
49                                The enzyme 10-formyltetrahydrofolate dehydrogenase (FDH) catalyzes con
50                                           10-Formyltetrahydrofolate dehydrogenase (FDH) catalyzes the
51                                           10-Formyltetrahydrofolate dehydrogenase (FDH) consists of t
52                                           10-Formyltetrahydrofolate dehydrogenase (FDH) converts 10-f
53                                           10-Formyltetrahydrofolate dehydrogenase (FDH) is composed o
54 s identified as an additional activity of 10-formyltetrahydrofolate dehydrogenase (FDH) protein.
55                               The enzyme, 10-formyltetrahydrofolate dehydrogenase (FDH), converts 10-
56  one of the enzymes of folate metabolism, 10-formyltetrahydrofolate dehydrogenase (FDH), requires a 4
57  the multidomain, multifunctional enzyme, 10-formyltetrahydrofolate dehydrogenase (FDH), using a bacu
58       The C-terminal domain (C(t)-FDH) of 10-formyltetrahydrofolate dehydrogenase (FDH, ALDH1L1) is a
59                                 Cytosolic 10-formyltetrahydrofolate dehydrogenase (FDH, ALDH1L1) is a
60                      We conclude that the 10-formyltetrahydrofolate dehydrogenase activity of FDH is
61 th alanines resulted in total loss of the 10-formyltetrahydrofolate dehydrogenase activity, whereas t
62 viously purified COOH-terminal domain had 10-formyltetrahydrofolate dehydrogenase activity.
63 ctivity, and the full-length FDH produces 10-formyltetrahydrofolate dehydrogenase activity.
64 zyme catalytic centers but is crucial for 10-formyltetrahydrofolate dehydrogenase activity.
65 rity between the amino-terminal domain of 10-formyltetrahydrofolate dehydrogenase and methionyl-tRNA-
66          Passage of a reaction mixture of 10-formyltetrahydrofolate dehydrogenase down a size exclusi
67                                           10-Formyltetrahydrofolate dehydrogenase is also known to ex
68                              Coupling the 10-formyltetrahydrofolate dehydrogenase reaction to an exce
69       A new rapid procedure for purifying 10-formyltetrahydrofolate dehydrogenase results in 90 mg of
70 lysis of the product inhibition curve for 10-formyltetrahydrofolate dehydrogenase shows that H4-PteGl
71         There is a several-fold excess of 10-formyltetrahydrofolate dehydrogenase subunits in liver r
72                                      FDH (10-formyltetrahydrofolate dehydrogenase) is strongly downre
73 ependent crystallographic support in work on formyltetrahydrofolate dehydrogenase, work which further
74  how much of a physiologic dose of [(13)C5]5-formyltetrahydrofolate delivered in a pH-sensitive enter
75 residue N-terminal domain catalyzes the N-10-formyltetrahydrofolate-dependent formylation of the 4''-
76 id to UDP-4-keto-arabinose and (ii) the N-10-formyltetrahydrofolate-dependent formylation of UDP-4-am
77 -pentapyranosyl-4' '-ulose] and (2) the N-10-formyltetrahydrofolate-dependent formylation of UDP-Ara4
78 f [(3)H]5-methyltetrahydrofolate and [(3)H]5-formyltetrahydrofolate (di- through heptaglutamates).
79  transport, subsequent pemetrexed and (6S)-5-formyltetrahydrofolate export into the cytosol was marke
80                      The folate derivative 5-formyltetrahydrofolate (folinic acid; 5-CHO-THF) was dis
81 in bears a folate binding site, possesses 10-formyltetrahydrofolate hydrolase activity, and exists as
82 ino-terminal domain (residue 1-310) bears 10-formyltetrahydrofolate hydrolase activity, the carboxyl-
83 he Escherichia coli genes purU and purN, N10-formyltetrahydrofolate hydrolase and glycinamide ribonuc
84                                          N10-formyltetrahydrofolate hydrolase uses water to cleave N1
85 enyltetrahydrofolate is hydrolyzed to only 5-formyltetrahydrofolate if reducing agents are present or
86 yl group of serine and the formyl group of 5-formyltetrahydrofolate in complexes of these species wit
87 drofolate, 5'-methyltetrahydrofolate, and 5'-formyltetrahydrofolate in human plasma.
88        In order to address the function of 5-formyltetrahydrofolate in mammalian cells, intracellular
89  a likely source of CO(2) production from 10-formyltetrahydrofolate in mitochondria and plays an esse
90 anisms, the addition of p-aminobenzoate or 5-formyltetrahydrofolate in the external medium restored t
91 olysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate in vivo, and there is no requirem
92 ce large quantities of folate, and [(13)C5]5-formyltetrahydrofolate infused during colonoscopy is abs
93                 These results suggest that 5-formyltetrahydrofolate inhibits serine hydroxymethyltran
94 drofolate hydrolase uses water to cleave N10-formyltetrahydrofolate into tetrahydrofolate and formate
95 ha-(32)P]UDP-l-Ara4N is formylated when N-10-formyltetrahydrofolate is included.
96                      The metabolic role of 5-formyltetrahydrofolate is not known; however, it is an i
97                                  Finally, 10-formyltetrahydrofolate is susceptible to iron-catalyzed
98 hereas folE thyA mutants supplemented with 5-formyltetrahydrofolate (lacking pterins and depleted in
99 rofolate in mammalian cells, intracellular 5-formyltetrahydrofolate levels were depleted in human 5Y
100 nt in mouse liver and kidney does not bind 5-formyltetrahydrofolate, nor does it oligomerize with the
101 mined the effects of depleting cytoplasmic 5-formyltetrahydrofolate on cellular folate concentrations
102 e N terminus of slr0642) enabled growth on 5-formyltetrahydrofolate or folic acid but not on 5-formyl
103 in the presence and absence of glycine and 5-formyltetrahydrofolate pentaglutamate.
104 at results from the binding of glycine and 5-formyltetrahydrofolate polyglutamate, a slow tight-bindi
105 replaced with the more physiological 25 nM 5-formyltetrahydrofolate, R5 cells were 2-fold collaterall
106 nd was purified from the culture medium by 5-formyltetrahydrofolate-Sepharose affinity chromatography
107                                              Formyltetrahydrofolate synthetase (FTHFS) from the therm
108 nase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase (MTHFD1) for an associ
109 nase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) R653Q, may mo
110 nase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) rs2236225, in
111 n of the methyl groups from choline requires formyltetrahydrofolate synthetase encoded by fhs in R. p
112                         The subunit of N(10)-formyltetrahydrofolate synthetase is composed of three d
113 hylenetetrahydrofolate dehydrogenase, and 10-formyltetrahydrofolate synthetase were also evaluated.
114 luciferase mRNA binds to the cSHMT.glycine.5-formyltetrahydrofolate ternary complex with an apparent
115 hydrofolate, 5-formyltetrahydrofolate and 10-formyltetrahydrofolate - their stabilities during microw
116 ydrofolate and catalyzes the conversion of 5-formyltetrahydrofolate to 5,10-methenyltetrahydrofolate.
117                  Uniquely, they preferred 10-formyltetrahydrofolate to any physiological tetrahydropt
118 lyzes the NADP(+)-dependent conversion of 10-formyltetrahydrofolate to CO(2) and tetrahydrofolate (TH
119 se catalyses the transfer of formyl from N10-formyltetrahydrofolate to GAR to yield formyl-GAR and te
120 that catalyzes the oxidative catabolism of 5-formyltetrahydrofolate to p-aminobenzoylglutamate and a
121                               It converts 10-formyltetrahydrofolate to tetrahydrofolate and CO(2) in
122 ion, i.e. NADP(+)-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO(2), co
123 actions: the NADP+-dependent oxidation of 10-formyltetrahydrofolate to tetrahydrofolate and CO2 and t
124 mains of FDH and allows the conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2.
125 enase reaction resulting in conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2.
126 2 and the NADP+-independent hydrolysis of 10-formyltetrahydrofolate to tetrahydrofolate and formate.
127 hydrogenase (FDH) catalyzes conversion of 10-formyltetrahydrofolate to tetrahydrofolate in either a d
128 talyzes transfer of a formyl group from N-10-formyltetrahydrofolate to the 4'-amine of UDP-L-Ara4N.
129 ltetrahydrofolate or folic acid but not on 5-formyltetrahydrofolate triglutamate, demonstrating that
130 e site of ArnA transformylase and other N-10-formyltetrahydrofolate-utilizing enzymes suggests that t
131 hares some sequence identity with several 10-formyltetrahydrofolate-utilizing enzymes.
132 olic acid was a much better substrate, and 5-formyltetrahydrofolate was a poorer substrate for transp
133 acid, (6S)5-methyltetrahydrofolate, or (6S)5-formyltetrahydrofolate was not detected.
134 drofolate, 5'-methyltetrahydrofolate, and 5'-formyltetrahydrofolate were 1250, 400, and 360 pmol/L of
135 degradation in vitro with the exception of 5-formyltetrahydrofolate, which may be a storage form of f
136  folinic acid (also known as leucovorin or 5-formyltetrahydrofolate), whose metabolic function remain

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top