コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 not be the main CSPG contributory factor in glial scar.
2 lycans participating in the formation of the glial scar.
3 itory signals associated with myelin and the glial scar.
4 to the inhibitors associated with myelin and glial scar.
5 CSPGs), the major class of inhibitors in the glial scar.
6 ycans, the major inhibitory molecules in the glial scar.
7 n the pia mater but not in astrocytes in the glial scar.
8 tes become reactive and in many cases form a glial scar.
9 cluding the formation and maintenance of the glial scar.
10 nd versican are not expressed in the chronic glial scar.
11 pregulated by the reactive astrocytes at the glial scar.
12 restricted to the reactive astrocytes at the glial scar.
13 otentially related to the attenuation of the glial scar.
14 l lobe epilepsy hinges on the removal of the glial scar.
15 rograms and an inhibitory environment from a glial scar.
16 ate in large numbers among astrocytes in the glial scar.
17 al changes resulting in the formation of the glial scar.
18 t dendrite and the formation of a persistent glial scar.
19 or how single astrocytes combine to form the glial scar.
20 c axons in the inhibitory environment of the glial scar.
21 tory proteins associated with myelin and the glial scar.
22 dystrophic axons in an in vitro model of the glial scar.
23 avities, as well as the number of subretinal glial scars.
24 iated proteins and proteoglycans enriched in glial scars.
25 ry injury processes as well as in diminished glial scarring.
26 d in chronic phase may be due to preexisting glial scarring.
27 lect continuous axons and may instead depict glial scarring.
28 th, while its appearance on glia may promote glial scarring.
29 n of AQP4 expression or function might alter glial scarring.
30 with the NG2 CSPG, a major component of the glial scar, activates PKCzeta, and this activation is bo
34 s integral to the formation of an inhibitory glial scar and cytoskeleton-mediated astrocyte migration
35 mice expressing MMPs developed a more severe glial scar and enhanced expression of chondroitin sulfat
36 l contusion site with ChABC treatment of the glial scar and glial cell line-derived neurotrophic fact
37 sulted in sensory axon regeneration past the glial scar and into the white matter rostral to the inju
38 in sulphate proteoglycans (CSPGs) within the glial scar and perineuronal net creates a barrier to axo
39 of the tumor with the presence of a residual glial scar and reactive changes, mainly presence of hemo
40 scades that result in the development of the glial scar and the exclusion of meningeal fibroblasts fr
41 ation results in the formation of the neural/glial scar and the reconstitution of the glial limitans.
42 fter injury by regulating the formation of a glial scar and white matter sparing and/or axonal plasti
43 he peak of acute disease (day 14), prevented glial scarring and ameliorated the disease severity.
46 ng and axonal plasticity, the formation of a glial scar, and locomotor recovery after spinal cord inj
47 egeneration, attenuates the formation of the glial scar, and significantly enhances functional recove
52 droitin sulfate proteoglycans (CSPG), in the glial scar at the lesion; and (2) the diminished growth
53 physical or molecular barriers presented by glial scarring at the lesion site, it has been suggested
54 NT-3 can achieve axonal bridging beyond the glial scar, but growth for longer distances is not susta
55 levated, indicating that modification of the glial scar by ChABC promotes long-lasting signaling chan
56 egeneration of adult axons in the absence of glial scarring, by using a microtransplantation techniqu
57 lt myelinated white matter tracts beyond the glial scar can be highly permissive for regeneration.
62 ctive, we discuss the divergent roles of the glial scar during CNS regeneration and explore the possi
63 be a promising therapeutic target to reduce glial scarring during wound healing after spinal cord in
66 esive interactions between astrocytes at the glial scar, even though reactive gliosis and scar format
68 s in cellular responses resulted in abnormal glial scar formation after injury, and significantly inc
72 the nuclear pore complex (NPC) required for glial scar formation and reduced gamma oscillations in m
74 s demonstrate that it is possible to inhibit glial scar formation and to facilitate regeneration afte
79 egulation may enable targeted suppression of glial scar formation in diverse neurological disorders.
81 ary and secondary axotomy, inflammation, and glial scar formation that have devastating effects on ne
82 rves as an early signal for the induction of glial scar formation via the TGF-beta/Smad signaling pat
83 cytokines leads to dramatic inflammation and glial scar formation, affecting brain tissue's ability t
84 ating lesion causes upregulation of gliosis, glial scar formation, and heightened expression of CSPGs
85 ive suppressor of Muller cell proliferation, glial scar formation, and photoreceptor cell death in a
86 ions in the CNS, including the initiation of glial scar formation, angiogenesis, and maintenance of t
87 ding to cell death, axonal degeneration, and glial scar formation, exacerbating the already hostile e
88 In brain, AQP4 facilitates water balance and glial scar formation, which are important determinants o
90 SCI) leads to irreversible neuronal loss and glial scar formation, which ultimately result in persist
98 nd that degenerating white matter beyond the glial scar has a far greater intrinsic ability to suppor
102 We have successfully removed an existing glial scar in chronically contused rat spinal cord using
103 his level may facilitate manipulation of the glial scar in inflammatory disorders of the human CNS.
104 so, BMPR1b knock-out mice have an attenuated glial scar in the chronic stages following injury, sugge
107 lfate proteoglycans (CSPGs) found within the glial scar inhibit axon regeneration but the intracellul
109 he subacute and chronic phases of injury the glial scar is a physical and biochemical barrier to axon
114 ory molecules associated with myelin and the glial scar limit axon regeneration in the adult central
115 mical constraints imposed by the periinfarct glial scar may contribute to the limited clinical improv
116 pletion of adult OPCs, inhibition within the glial scar, or damage to the axons that prevents myelina
117 hrough white matter tracts, gray matter, and glial scars, overcoming the inhibitory nature of the CNS
118 and the TSG-6 protein is present within the glial scar, potentially coordinating and stabilizing the
120 -21 in regulating astrocytic hypertrophy and glial scar progression after SCI, and suggest miR-21 as
124 late in chronic phase (day 78), significant glial scarring remained and the clinical severity did no
125 glia largely segregate into the fibrotic and glial scars, respectively; therefore, we used a thymidin
126 an expression increases significantly in the glial scar resulting from cortical injury, including the
127 tional heterogeneity within the cells of the glial scar-specifically, astrocytes, NG2 glia and microg
129 glycans (CSPGs) are a major component of the glial scar that contributes to the limited regeneration
132 have developed a novel in vitro model of the glial scar that mimics the gradient of proteoglycan foun
136 ajor axon growth inhibitory component of the glial scar tissue that blocks successful regeneration.
138 atly enlarged secondary injury surrounded by glial scar tissue, is a poorly understood complication o
139 of CSPGs are highly upregulated by reactive glial scar tissues after injuries and form a strong barr
140 ganglion neurons in an in vitro model of the glial scar to examine macrophage-axon interactions and o
141 m cells were also more efficient in reducing glial scar volume and expression of chondroitin sulfates
144 ar composition of neural tissue and leads to glial scarring, which inhibits the regrowth of damaged a
145 ns are the principal inhibitory component of glial scars, which form after damage to the adult centra
146 creased CSPG deposition and development of a glial scar, while also increasing axon growth after spin
148 rimary contributors to the growth-inhibitory glial scar, yet they are also neuroprotective and can fo
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。