戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1  with the behavior of the natural product, d-glyceraldehyde 3-phosphate.
2 ion of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate.
3 PLP) from glutamine, ribose 5-phosphate, and glyceraldehyde 3-phosphate.
4  derived from dihydroxyacetone phosphate and glyceraldehyde 3-phosphate.
5 sphosphate to dihydroxyacetone phosphate and glyceraldehyde-3-phosphate.
6 dol condensation of the unstable catabolites glyceraldehyde 3-phosphate and dihydroxyacetone phosphat
7 ase (TIM) catalyzes the interconversion of d-glyceraldehyde 3-phosphate and dihydroxyacetone phosphat
8 ructose 1,6-bis(phosphate) (Fru-1,6-P(2)) to glyceraldehyde 3-phosphate and dihydroxyacetone phosphat
9  enzymes of the pentose phosphate pathway to glyceraldehyde 3-phosphate and fructose 6-phosphate, thu
10 osphate isomerase-catalyzed reactions of (R)-glyceraldehyde 3-phosphate and k(cat)/K(HPi)K(GA) for re
11                              DHAP as well as glyceraldehyde 3-phosphate and oxaloacetate inhibited ac
12 nversion of indole-3-glycerol phosphate to d-glyceraldehyde-3-phosphate and indole.
13 quently cleaved by the aldolase DgaF to form glyceraldehyde-3-phosphate and pyruvate.
14                     However, pretreatment of glyceraldehyde-3-phosphate and ribonuclease A with BOH i
15 f MtFBA bound to dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, and fructose 1,6-bisphosphat
16 decrease in k(cat)/K(m) for isomerization of glyceraldehyde 3-phosphate, and the activity of this mut
17 es the condensation of ribulose 5-phosphate, glyceraldehyde-3-phosphate, and ammonia, and YaaE cataly
18 sphoenolpyruvate, glyceric acid 2-phosphate, glyceraldehyde-3-phosphate, and product, dihydroxyaceton
19 bolize intracellular glucose to pyruvate and glyceraldehyde 3-phosphate are coordinately regulated, c
20 (HB) as donor substrates, in each case using glyceraldehyde-3-phosphate as acceptor substrate.
21          A structure was also obtained where glyceraldehyde 3-phosphate binds in the P(s) pocket in t
22 mportant conformational states: ligand-free, glyceraldehyde-3-phosphate-bound(like), and the active s
23            Pyrophosphate, polyphosphate, and glyceraldehyde-3-phosphate could support growth as sole
24 n of dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (d-G3P) by an unresolved mech
25 s the formation of DXP via condensation of D-glyceraldehyde 3-phosphate (D-GAP) and pyruvate in a thi
26 of pyruvate as a 2-hydroxyethyl donor with d-glyceraldehyde-3-phosphate (d-GAP) as acceptor forming D
27 s was identified by N-terminal sequencing as glyceraldehyde-3-phosphate dehy-drogenase (GAPDH).
28       Successful single cell analysis of the glyceraldehyde 3 phosphate dehydrogenase (GAPDH) gene in
29 ng the non-secreted proteins gamma-actin and glyceraldehyde 3'-phosphate dehydrogenase.
30 reatine kinase, aldolase A and an isoform of glyceraldehyde 3-phosphate dehydrogenase (G3PDH) showed
31 sp-Glu-Ala-Asp) box polypeptide, beta-actin, glyceraldehyde 3-phosphate dehydrogenase (G3PDH), annexi
32 argeted hAuNP exhibited high specificity for glyceraldehyde 3-phosphate dehydrogenase (GADPH) mRNA in
33 ity of two commonly used housekeeping genes, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 18S
34 complete recovery of oxidatively inactivated glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and glu
35 lvin cycle by forming a ternary complex with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and pho
36 olved in this DNA-protein complex identified glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a co
37 e identified the mammalian glycolysis enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as an N
38      These acyloxy nitroso compounds inhibit glyceraldehyde 3-phosphate dehydrogenase (GAPDH) by form
39                                              Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) has bee
40                                              Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a gl
41 elta12 desaturase, superoxide dismutase, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA wi
42 hat the P39 peptide is a structural mimic of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) on the
43                                              Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) plays a
44 ase 1, Lupus Ku autoantigen protein p70, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein
45                     Arginine kinase (AK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were de
46                    Here, we demonstrate that glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a conv
47                                              Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a prot
48 ol) and measured for total protein quantity, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), citrat
49 n 1 (Nramp1), ceruloplasmin, hephaestin, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), were m
50                                          The glyceraldehyde 3-phosphate dehydrogenase (GAPDH)-normali
51 n, aggregation, and nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH).
52 ose-1,6-bisphosphate aldolase (aldolase) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH).
53 ive oxygen species accumulate and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH).
54                     Tetrameric rabbit muscle glyceraldehyde 3-phosphate dehydrogenase (GAPDH; EC 1.2.
55 -NSAID prodrug inhibited cylcooxgenase-2 and glyceraldehyde 3-phosphate dehydrogenase activity and tr
56 ve hippocampal content of glycolytic enzymes glyceraldehyde 3-phosphate dehydrogenase and pyruvate de
57 gs indicate that the HMGB1-HMGB2-HSC70-ERp60-glyceraldehyde 3-phosphate dehydrogenase complex detects
58  establish the blockade of glycolysis at the glyceraldehyde 3-phosphate dehydrogenase step as the cen
59 eads to the attenuation of glycolysis at the glyceraldehyde 3-phosphate dehydrogenase step due to the
60 f glycolytic intermediates before and at the glyceraldehyde 3-phosphate dehydrogenase step, promoting
61 decreased glycolytic intermediates after the glyceraldehyde 3-phosphate dehydrogenase step, thereby r
62 to attenuation of glycolysis by blocking the glyceraldehyde 3-phosphate dehydrogenase step.
63 re determined by (1)H NMR spectroscopy using glyceraldehyde 3-phosphate dehydrogenase to trap the fir
64 itution of malonylated lysine residue 184 in glyceraldehyde 3-phosphate dehydrogenase with glutamic a
65 ction of siRNA(GAPDH) [small interfering RNA(glyceraldehyde 3-phosphate dehydrogenase)] reduces PLCbe
66 dentified four points in central metabolism (Glyceraldehyde 3-phosphate dehydrogenase, transaldolase,
67 y untargeted glycolytic enzymes, aldolase A, glyceraldehyde 3-phosphate dehydrogenase, triose phospha
68 the intrinsic beta-actin, alpha-tubulin, and glyceraldehyde 3-phosphate dehydrogenase, which are usua
69                                              Glyceraldehyde 3-phosphate dehydrogenase-S (GAPDS) is th
70 SC70, protein disulfide isomerase ERp60, and glyceraldehyde 3-phosphate dehydrogenase.
71 drogenase ExaC, arginine deiminase ArcA, and glyceraldehyde 3-phosphate dehydrogenase.
72 ersulfidation leads to decreased activity of glyceraldehyde 3-phosphate dehydrogenase.
73 phosphopeptide, including nitrate reductase, glyceraldehyde- 3-phosphate dehydrogenase, a calcium-dep
74 hat is, PML-RAR alpha mRNA copies divided by glyceraldehyde-3'-phosphate dehydrogenase (GAPDH) mRNA c
75 metastases and on normalization to 5 x 10(6) glyceraldehyde-3'-phosphate dehydrogenase mRNA copies, n
76  the activity of the oxidatively inactivated glyceraldehyde-3-phosphate dehydrogenase (G-3PD) in H2O2
77 uctase (GR), thioredoxin reductase (TR), and glyceraldehyde-3-phosphate dehydrogenase (G3PD) activiti
78 ase (GR)-specific activity and a 24% loss in glyceraldehyde-3-phosphate dehydrogenase (G3PD)-specific
79 , which encodes the B subunit of chloroplast glyceraldehyde-3-phosphate dehydrogenase (GADPH) of Arab
80 yphal wall protein-1 (Hwp1); enolase (Enol); glyceraldehyde-3-phosphate dehydrogenase (Gap1); and pho
81 t encode the A and B subunits of chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPA and GAPB)
82                         The cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPC) catalyze
83                                  A cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) was iden
84  thaliana) plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in phot
85 ects and report association with SNPs in the glyceraldehyde-3-phosphate dehydrogenase (GAPD) gene.
86 etoxification via synergistic interaction of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a m
87                                Rab2 requires glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and aty
88 orms an inactive supramolecular complex with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and pho
89 identified as possibly acetylated, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Rpa
90 hat are regulated by S-nitrosylation such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the
91 pathway initiated by the interaction between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the
92 cting proteins to be the glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and tri
93 y experimental approaches, we identified the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a C1
94 us and processed for RT-PCR and qrtPCR using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an e
95 quantitative reverse transcription-PCR using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as cont
96                    We found that I/R induces glyceraldehyde-3-phosphate dehydrogenase (GAPDH) associa
97 ix and Bcl-xL proteins decreased relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) control
98 ose-1,6-bisphosphate aldolase (aldolase) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) followe
99                                              Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from hu
100                             Translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from th
101                                              Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has bee
102                    Recently, a surface-bound glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has bee
103 ir ability to perform molecular targeting of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in huma
104        The translocation and accumulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the
105                                              Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a cl
106                                              Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a gl
107                                              Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a mu
108                                              Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a mu
109                                              Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ub
110                                NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ub
111                                              Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an a
112                                              Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an e
113                                              Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is ofte
114   In a second pathway, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mediate
115 ling cascade involving nitric oxide (NO) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mediate
116 bservations suggested that the length of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA 3'
117     All results were normalized according to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA in
118                                              Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) partici
119 ow that, unexpectedly, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) physica
120                          METH also increases glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein
121 malization of cDNA templates was achieved by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) quantif
122 n kinase C iota/lambda (aPKCiota/lambda) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) recruit
123                                        Using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) silenci
124 mide gel electrophoresis, and phosphorylated glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was ide
125 regulated telomere-binding proteins, nuclear glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was ide
126  protein of 362 amino acids with identity to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was obt
127 dual photooxidizable residues in the protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were ex
128 ar SMCs that involves interaction of nuclear glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with ap
129 nown to serve as receptors for Plg including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cyto
130 P-ribosyl)ation of the key glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a modi
131                                              Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an imp
132 s adenylate kinase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and en
133 ei glycosomal phosphoglycerate kinase (PGK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and gl
134 g transcription of the cyclophilin A (PPIA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and se
135     Its ability to protect citrate synthase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and th
136 otein kinase C iota/lambda (PKCiota/lambda), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and th
137 lity, some common housekeeping genes such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-a
138  GSTP1, and GSTT1) and three reference gene [glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-a
139                                Commonly used glyceraldehyde-3-phosphate dehydrogenase (Gapdh), beta-a
140 two major proteins, creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), confor
141 ion and inhibition of the sulfhydryl enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), in vit
142                          Superoxide inhibits glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which
143 gical concentrations, nitroalkenes inhibited glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which
144 ssion and the involvement in this process of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which
145 dy, we have discovered that Escherichia coli glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which
146 ent, pathways have been uncovered: (1) a p53-glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-BAX pat
147  cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
148 o oxidative stress: creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
149 n of nitric oxide (NO), which S-nitrosylates glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
150 nown association with NFTs; one of these was glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
151 esicles also contained the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
152  forms of all six mammalian Prx isoforms and glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
153 s (VTCs) where PKCiota/lambda phosphorylates glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
154 e identified as low micromolar inhibitors of glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
155 keeping genes beta-2 microglobulin (B2M) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
156 ar localization of the key glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
157  bind directly to the L1 interaction partner glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
158 otein 1 (NSAP1), ribosomal protein L13a, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
159 lated a 37-kDa AUBP, which was identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH).To summ
160 e [IA, an inhibitor of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH)] on end
161 ipt [0.24 versus 0.008% relative to 100% for glyceraldehyde-3-phosphate dehydrogenase (GAPDH)], the r
162 olar concentrations of palmitoyl-CoA inhibit glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.
163 lytic domain of Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) in whi
164 of tropomyosin, arginine or creatine kinase, glyceraldehyde-3-phosphate dehydrogenase (GPDH), calcium
165  HeLa cell surface copurified with authentic glyceraldehyde-3-phosphate dehydrogenase (muscle form) (
166 6 arbitrary units, respectively, relative to glyceraldehyde-3-phosphate dehydrogenase (n = 5, p = non
167                       Cytosolic Oryza sativa glyceraldehyde-3-phosphate dehydrogenase (OsGAPDH), the
168 1), penicillin-binding protein 2b (SAG0765), glyceraldehyde-3-phosphate dehydrogenase (SAG0823), and
169 xoplasma gondii egresses from the host cell, glyceraldehyde-3-phosphate dehydrogenase 1 (GAPDH1), whi
170 s the abundance of glycolytic enzymes (e.g., glyceraldehyde-3-phosphate dehydrogenase [GAPDH]) and tr
171                               Both decreased glyceraldehyde-3-phosphate dehydrogenase activity and in
172 Heparan sulfate was also capable of inducing glyceraldehyde-3-phosphate dehydrogenase aggregation, bu
173      Overexpression of the secretory protein glyceraldehyde-3-phosphate dehydrogenase and ATP synthas
174 abolic enzymes, including nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase and beta-glucos
175                           Nuclear complex of glyceraldehyde-3-phosphate dehydrogenase and DNA repair
176 ase, Akt kinase, phospho-BAD (inactive), and glyceraldehyde-3-phosphate dehydrogenase and increased t
177 h muscle actin protein or the mRNA levels of glyceraldehyde-3-phosphate dehydrogenase and interleukin
178 ion of proteins with a KFERQ motif including glyceraldehyde-3-phosphate dehydrogenase and Pax2.
179 demonstrated an increased ability to degrade glyceraldehyde-3-phosphate dehydrogenase and ribonucleas
180 splayed an increased ability to degrade both glyceraldehyde-3-phosphate dehydrogenase and ribonucleas
181 lic enzymes that are sensitive to oxidation, glyceraldehyde-3-phosphate dehydrogenase and the sodium-
182 le expression level such actin, tubulin, and glyceraldehyde-3-phosphate dehydrogenase are frequently
183   We have obtained soluble recombinant sperm glyceraldehyde-3-phosphate dehydrogenase as a heterotetr
184 Colell et al. identify the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase as a potent inh
185 ocytes, and identified glucose transport and glyceraldehyde-3-phosphate dehydrogenase as the most sel
186 in prefibrillar species, the heparin-induced glyceraldehyde-3-phosphate dehydrogenase early oligomers
187   In addition, we found that the chloroplast glyceraldehyde-3-phosphate dehydrogenase enzyme activity
188  in vitro the early oligomers present in the glyceraldehyde-3-phosphate dehydrogenase fibrillation pa
189  of the light-activated pea leaf chloroplast glyceraldehyde-3-phosphate dehydrogenase form a disulfid
190 vailability of the structure of the extended glyceraldehyde-3-phosphate dehydrogenase from the archae
191  designed to target the histidine kinase and glyceraldehyde-3-phosphate dehydrogenase genes of B. der
192 s on several genes including c-myc, p21, and glyceraldehyde-3-phosphate dehydrogenase genes, indicati
193                                        Sperm glyceraldehyde-3-phosphate dehydrogenase has been shown
194 s a heterotetramer with the Escherichia coli glyceraldehyde-3-phosphate dehydrogenase in a ratio of 1
195        Two crystal structures of L. mexicana glyceraldehyde-3-phosphate dehydrogenase in complex with
196 b proteins, alpha-synuclein, synapsin-I, and glyceraldehyde-3-phosphate dehydrogenase in cultured hip
197 is inhibited by iodoacetate, an inhibitor of glyceraldehyde-3-phosphate dehydrogenase in glycolysis.
198 ucose, koningic acid (10 microM), a specific glyceraldehyde-3-phosphate dehydrogenase inhibitor, incr
199 ent of glucose metabolism via iodoacetate, a glyceraldehyde-3-phosphate dehydrogenase inhibitor, is s
200                                              Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic
201 ression levels, we found that beta-actin and glyceraldehyde-3-phosphate dehydrogenase levels fluctuat
202 hamtreated rats (kidney, densitometric value/glyceraldehyde-3-phosphate dehydrogenase mRNA value rati
203 us 0.58 +/- 0.04; liver, densitometric value/glyceraldehyde-3-phosphate dehydrogenase mRNA value rati
204 ERbeta mRNA steady-state levels (relative to glyceraldehyde-3-phosphate dehydrogenase mRNA) were sign
205 nin, and Tmod) but did not affect endogenous glyceraldehyde-3-phosphate dehydrogenase or expression f
206 g reduced levels of the Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase or ribulose-1,5
207 chromosome 4 (heterochromatic) and the human glyceraldehyde-3-phosphate dehydrogenase promoter (euchr
208 e with hyperplastic polyps (median IFN-gamma/glyceraldehyde-3-phosphate dehydrogenase ratio x 100,000
209 ted no significant effect of furosemide (NCC/glyceraldehyde-3-phosphate dehydrogenase ratios: group 1
210 ructures of human somatic and sperm-specific glyceraldehyde-3-phosphate dehydrogenase revealed few di
211 nces in amounts of WDNM1, epsilon-casein, or glyceraldehyde-3-phosphate dehydrogenase RNA were observ
212 c peptides independently confirmed actin and glyceraldehyde-3-phosphate dehydrogenase S-thiolation du
213  of cocaine are mediated by the nitric oxide-glyceraldehyde-3-phosphate dehydrogenase signaling pathw
214 ever, further detailed analysis of the sperm glyceraldehyde-3-phosphate dehydrogenase structure revea
215 t difference compared with published somatic glyceraldehyde-3-phosphate dehydrogenase structures that
216 e, after which glutathione S-transferase and glyceraldehyde-3-phosphate dehydrogenase then ATPases un
217                        A +142-Da delta(m) on glyceraldehyde-3-phosphate dehydrogenase was automatical
218 he mRNA abundance for lipoprotein lipase and glyceraldehyde-3-phosphate dehydrogenase was elevated in
219  enhanced the rate of S-glutathionylation of glyceraldehyde-3-phosphate dehydrogenase with GSSG or S-
220 rase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase) and their resp
221 -C but had no effect on beta-actin or GAPDH (glyceraldehyde-3-phosphate dehydrogenase).
222 and an internal manufacturer control, GAPDH (glyceraldehyde-3-phosphate dehydrogenase).
223 tose phosphate pathway by ADPr inhibition of glyceraldehyde-3-phosphate dehydrogenase, a central enzy
224    EGF or ammonia prolonged the half-life of glyceraldehyde-3-phosphate dehydrogenase, a classic subs
225 o 42 h circadian patterns in the activity of glyceraldehyde-3-phosphate dehydrogenase, a common clock
226  influential role for the nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, a cytosolic en
227 ngerprinting and peptide sequencing included glyceraldehyde-3-phosphate dehydrogenase, a glycolytic e
228  IGFBP-4, a structurally related protein, or glyceraldehyde-3-phosphate dehydrogenase, a housekeeping
229 covalent inhibitors of Plasmodium falciparum glyceraldehyde-3-phosphate dehydrogenase, a validated ta
230 or catalysis or FeS cluster binding, such as glyceraldehyde-3-phosphate dehydrogenase, aldehyde dehyd
231 ajor glycated amino acids) of serum albumin, glyceraldehyde-3-phosphate dehydrogenase, aldolase, and
232 erythrocytes were stained with antibodies to glyceraldehyde-3-phosphate dehydrogenase, aldolase, phos
233 exin A1/A3/A4/A5/A6, clathrin heavy chain 1, glyceraldehyde-3-phosphate dehydrogenase, alpha-enolase,
234 (ATP) synthase, alphaB-crystallin, galectin, glyceraldehyde-3-phosphate dehydrogenase, alpha-enolase,
235 east homologues of Hsp70 proteins), Tdh2/3p (glyceraldehyde-3-phosphate dehydrogenase, an RNA-binding
236 rprisingly, p38 represents a nuclear form of glyceraldehyde-3-phosphate dehydrogenase, and binding to
237 her macromolecules including Tau, ubiquitin, glyceraldehyde-3-phosphate dehydrogenase, and glycosamin
238                       We found that the HKGs glyceraldehyde-3-phosphate dehydrogenase, beta actin and
239 or bovine serum albumin, choriogonadotropin, glyceraldehyde-3-phosphate dehydrogenase, Herceptin, and
240 inity-purified proteins we identified actin, glyceraldehyde-3-phosphate dehydrogenase, HSP27, protein
241 l respiratory chain enzymes, inactivation of glyceraldehyde-3-phosphate dehydrogenase, inhibition of
242 sin-beta4, alpha-tubulin, alphaB-crystallin, glyceraldehyde-3-phosphate dehydrogenase, metallothionei
243 ng cytosolic creatine kinase, tropomyosin 1, glyceraldehyde-3-phosphate dehydrogenase, myosin light c
244 eleton), protein 4.1, protein 4.2, aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructok
245 r) had C-terminal lysine residues and three (glyceraldehyde-3-phosphate dehydrogenase, phosphoglycera
246 osphoglucose isomerase, phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycera
247 cle pyruvate kinase, malate dehydrogenase 1, glyceraldehyde-3-phosphate dehydrogenase, proteoglycan 4
248 E. coli and demonstration that the resulting glyceraldehyde-3-phosphate dehydrogenase, the normal tar
249 o observed on binding of a metabolic enzyme, glyceraldehyde-3-phosphate dehydrogenase, to cdAE1.
250             Fluoride decreased expression of glyceraldehyde-3-phosphate dehydrogenase, which acts to
251 ed with an siRNA for the housekeeping enzyme glyceraldehyde-3-phosphate dehydrogenase, wild-type HSV
252 our system: alpha-synuclein, synapsin-I, and glyceraldehyde-3-phosphate dehydrogenase.
253 itrosylation of the major apoptotic effector glyceraldehyde-3-phosphate dehydrogenase.
254  an operon that encode the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase.
255    One, gapdh, encodes the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase.
256           A 39-kDa species was identified as glyceraldehyde-3-phosphate dehydrogenase.
257 calcium channels; DC, dendritic cell; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; IFN-gamma, int
258       Preexisting stable mRNAs (e.g., GAPDH [glyceraldehyde-3-phosphate dehydrogenase]) are rapidly d
259 onstituted by the combined activities of the glyceraldehyde 3-phosphate dehydrogenases GapA/GapB and
260 e show that the cytosolic glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenases (GAPCs) intera
261                                              Glyceraldehyde-3-phosphate dehydrogenases (GAPDH) from t
262  of multifunctional, cell-surface-associated glyceraldehyde-3-phosphate dehydrogenases, which not onl
263 ltered the surface expression of enolase and glyceraldehyde-3-phosphate dehydrogenease, two glycolyti
264 se isomerization reactions of D-xylose and d-glyceraldehyde 3-phosphate (DGAP), respectively.
265 e labeling ratios C-4/C-3 of glucose versus (glyceraldehyde 3-phosphate)/(dihydroxyacetone phosphate)
266 )]dihydroxyacetone phosphate and [U-(13)C(3)]glyceraldehyde 3-phosphate followed by rearrangements in
267 synthesis in vitro with substrates including glyceraldehyde-3-phosphate, fructose-6-phosphate, and gl
268 ate (DAH7-P) synthase was incubated with D,L-glyceraldehyde 3-phosphate (G3P) and [2,3-(13)C(2)]-PEP,
269 ion of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bi
270  are alpha-d,l-glycerol phosphate (GP) and d-glyceraldehyde 3-phosphate (G3P), and examples of two ne
271  3-indole-d-glycerol 3'-phosphate (IGP) or d-glyceraldehyde 3-phosphate (G3P), for use in the investi
272 into dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (G3P).
273 bunit, Pdx1, where ribose-5-phosphate (R5P), glyceraldehyde-3-phosphate (G3P), and ammonia are conden
274 tion of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (G3P); however, little is kno
275 ion of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (GA3P), as well as a variety
276 ally unfavorable isomerization reaction, (R)-glyceraldehyde 3-phosphate (GAP) and [2(R)-(2)H]-GAP (d-
277 y 50-fold increase in K(m) for the substrate glyceraldehyde 3-phosphate (GAP) and a 60-fold increase
278 is of the aldose-ketose isomerization of (R)-glyceraldehyde 3-phosphate (GAP) by triosephosphate isom
279 oduct distributions for the reactions of (R)-glyceraldehyde 3-phosphate (GAP) in D(2)O at pD 7.5-7.9
280      Product yields for the reactions of (R)-glyceraldehyde 3-phosphate (GAP) in D2O at pD 7.9 cataly
281 talysis of the reversible isomerization of R-glyceraldehyde 3-phosphate (GAP) to dihydroxyacetone pho
282 PP)-dependent condensation of pyruvate and d-glyceraldehyde 3-phosphate (GAP) to yield DXP in the fir
283 ations test for channeling of the substrate, glyceraldehyde 3-phosphate (GAP), as it passes between t
284 on of dihydroxyacetone phosphate (DHAP) to d-glyceraldehyde 3-phosphate (GAP), for which there is a w
285 ; TIM catalyzes the isomerization of DHAP to glyceraldehyde 3-phosphate (GAP), while MGS catalyzes th
286               The mevalonate pathway and the glyceraldehyde 3-phosphate (GAP)-pyruvate pathway are al
287 quent decarboxylation that is triggered by d-glyceraldehyde 3-phosphate (GAP).
288 e reversible condensation of glycerone-P and glyceraldehyde 3-phosphate into fructose 1,6-bisphosphat
289 es an enzyme involved in the mobilization of glyceraldehyde-3-phosphate into the pentose phosphate pa
290 eaction from dihydroxyacetone phosphate to D-glyceraldehyde 3-phosphate is significantly slower than
291  substrates dihydroxyacetone phosphate and d-glyceraldehyde 3-phosphate [(k(cat)/K(m))(GAP) and (k(ca
292  reduced k(cat) relative to WT with either d-glyceraldehyde 3-phosphate or dihyrdroxyacetone phosphat
293 he expected NAD as the electron acceptor for glyceraldehyde 3-phosphate oxidation enables energy to b
294 onversion of dihydroxyacetone phosphate to D-glyceraldehyde 3-phosphate, probably because an active-s
295                                              Glyceraldehyde 3-phosphate reacts with the second interm
296 ontents revealed dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, ribulose, erythrose, and suc
297 ereospecific, NADPH-dependent reduction of l-glyceraldehyde 3-phosphate, the enantiomer of the TIM su
298 reversible enzyme-catalyzed isomerization of glyceraldehyde 3-phosphate to give dihydroxyacetone phos
299 , catalyzes the oxidative phosphorylation of glyceraldehyde-3-phosphate to 1,3-biphosphoglycerate (BP
300    Triose glycolysis (generation of ATP from glyceraldehyde 3-phosphate via phosphoenol pyruvate) is

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top