戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 could restore antitumor reactivity through a graft-versus-tumor effect.
2  cutaneous T-cell lymphoma with evidence for graft-versus-tumor effect.
3 wing nonmyeloablative HSCT consistent with a graft-versus-tumor effect.
4                            This was termed a graft-versus-tumor effect.
5  incidence of infection and the T-cell-based graft-versus-tumor effect.
6 the allograft is tumor free and may induce a graft-versus-tumor effect.
7 sion associated with GVHD is consistent with graft-versus-tumor effect.
8 viruses and inflammation, to contribute to a graft-versus-tumor effect.
9 nal cell carcinoma as being susceptible to a graft-versus-tumor effect.
10 s HSC transplant is being performed to add a graft-versus-tumor effect.
11          These results are consistent with a graft-versus-tumor effect.
12 d for more than 1 year, is compatible with a graft-versus-tumor effect.
13 onor leukocyte infusion for the induction of graft versus tumor effects.
14 ity independent of immune reconstitution and graft-versus-tumor effects.
15 se myeloablative conditioning and allogeneic graft-versus-tumor effects.
16 a significant survival benefit with retained graft-versus-tumor effects.
17 ngraft and mount immune responses, including graft-versus-tumor effects.
18 versus-host disease (GVHD) with retention of graft-versus-tumor effects.
19  to reduce transplant risks while preserving graft-versus-tumor effects.
20 to the donor lymphocytes, leading to maximal graft-versus-tumor effects.
21 ion for allogeneic engraftment and resultant graft-versus-tumor effects.
22 ion for allogeneic engraftment and resultant graft-versus-tumor effects.
23  regimen-related toxicities while optimizing graft-versus-tumor effects.
24 , CD4(+) iNKT cells preserve T-cell-mediated graft-versus-tumor effects.
25       Although allo-HSCT provides beneficial graft-versus-tumor effects, acute GVHD (aGVHD) is the pr
26 ft-versus-host disease (GVHD) and beneficial graft-versus-tumor effect after allogeneic bone marrow t
27 plex (MHC) class I influence engraftment and graft-versus-tumor effects after allogeneic bone marrow
28                                              Graft-versus-tumor effects can be achieved after allogen
29             HCT with the induction of potent graft-versus-tumor effects can be performed in previousl
30 sus-host reactions, associated with powerful graft-versus-tumor effects, can be achieved without graf
31 ntered molecular remissions, suggesting that graft-versus-tumor effects could, by themselves, cure so
32 ft-versus-host disease while maintaining the graft-versus-tumor effect even at physiologic doses of T
33 nsplantable tumors has limited assessment of graft-versus-tumor effects following hematopoietic cell
34 nts for hematologic malignancies, exploiting graft-versus-tumor effects for eradicating malignancies.
35 ning for hematologic malignancies depends on graft-versus-tumor effects for eradication of cancer.
36 splant in this patient to exploit a possible graft-versus-tumor effect from allogeneic lymphocytes.
37 mising relapse-free survival, separating the graft-versus-tumor effect from unwanted GVHD.
38 s I or II molecules may help to separate the graft-versus-tumor effects from graft-versus-host diseas
39 hat CIK cells have the potential to separate graft-versus-tumor effects from GVHD.
40                            The presence of a graft-versus-tumor effect has been well established in l
41 logic cancers, we sought to induce analogous graft-versus-tumor effects in patients with metastatic r
42 t alloantigens is associated with beneficial graft-versus-tumor effects in recipients of allogeneic h
43 onic graft versus host disease (GVHD) and on graft versus tumor effect is less known.
44 cells (Tregs) suppress GVHD while preserving graft-versus-tumor effects, making them an attractive ta
45 D provides suggestive clinical evidence that graft-versus-tumor effects may occur against breast canc
46                           Interestingly, the graft-versus-tumor effect mediated by CCR2-/- CD8+ T cel
47 on of T cells is one approach to enhance the graft-versus-tumor effect of allogeneic bone marrow tran
48 blative conditioning regimens relying on the graft-versus-tumor effect of allogeneic lymphocytes has
49 ty Ags (MiHA) plays an important role in the graft-versus-tumor effect of allogeneic stem cell transp
50 eve donor stem cell engraftment allowing the graft-versus-tumor effect of the allograft to be exploit
51 d by allogeneic transplantation comes from a graft-versus-tumor effect of the graft.
52 dk5 activity in donor T cells contributed to graft-versus-tumor effects, pharmacologic inhibition of
53                              T-cell-mediated graft-versus-tumor effects play a key role in the elimin
54     It has become clear that T-cell-mediated graft-versus-tumor effects play an important role in the
55           Metastatic RCC is susceptible to a graft-versus-tumor effect promoted by allogeneic stem-ce
56 ve HCT aims to eradicate the malignancy with graft-versus-tumor effect, rather than with high doses o
57 fter allogeneic HCT and hence may impede the graft-versus-tumor effect, recent findings indicate that
58 teroid-refractory GVHD while maintaining the graft versus tumor effect to avoid a potential rise in r
59              However, as the contribution of graft-versus-tumor effects to the success of allogeneic
60 y that facilitated engraftment and permitted graft-versus-tumor effects while minimizing graft-versus
61 miHA) vaccines have the potential to augment graft-versus-tumor effects without graft-versus-host dis

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。