戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 ion of a competitive inhibitor of a receptor guanylyl cyclase.
2 vitro, demonstrating that it is a functional guanylyl cyclase.
3 ssion of NF-kappaB and activation of soluble guanylyl cyclase.
4 ein-coupled receptors, adenylyl cyclase, and guanylyl cyclase.
5 f cGMP in response to nitric oxide-activated guanylyl cyclase.
6 way and the subsequent activation of soluble guanylyl cyclase.
7 ndothelial nitric-oxide synthase and soluble guanylyl cyclase.
8  of NO synthase and subsequent activation of guanylyl cyclase.
9 taining the synaptic localization of soluble guanylyl cyclase.
10 ndothelial nitric oxide synthase and soluble guanylyl cyclase.
11 extent, by the direct stimulation of soluble guanylyl cyclase.
12  a multidomain, membrane-associated receptor guanylyl cyclase.
13 h, among other functions, stabilizes soluble guanylyl cyclase.
14  but not natriuretic peptide (NP)-stimulated guanylyl cyclase.
15 s (GCAPs) bind and regulate retinal membrane guanylyl cyclase 1 (RetGC1) but not natriuretic peptide
16 erization domain of a human retinal membrane guanylyl cyclase 1 (RetGC1) linked to autosomal dominant
17                             Retinal membrane guanylyl cyclase 1 (RetGC1) regulated by guanylyl cyclas
18 nfers Ca(2+)-sensitive activation of retinal guanylyl cyclase 1 (RetGC1).
19                      An inhibitor of soluble guanylyl cyclase, (1)H-(1,2,4)oxadiazolo(4,3-a)quinoxali
20 ated enzymes, adenylyl cyclase-5 and retinal guanylyl cyclase-1.
21                                              Guanylyl cyclase (1H-(1,2,4)-oxadiazolo[4,3-a]-quinoxali
22                                              Guanylyl cyclase 2C (GUCY2C) is a marker expressed by co
23              In intestinal epithelial cells, guanylyl cyclase 2C (GUCY2C) is a transmembrane receptor
24 o uroguanylin in the CNS, which can activate guanylyl cyclase 2C (GUCY2C) receptors in the brain to r
25 ic actions, as the endogenous ligand for the guanylyl cyclase 2C receptor has revealed a new system i
26        B-type natriuretic peptide (BNP) is a guanylyl cyclase A (GC-A) agonist.
27 effects were blocked by inhibition of either guanylyl cyclase A receptor or cyclic guanosine monophos
28 The two main receptors of NP, membrane-bound guanylyl cyclases A and B (GC-A and GC-B), mediate the e
29       Atrial natriuretic peptide (ANP) binds guanylyl cyclase-A (GC-A) and natriuretic peptide recept
30 t was shown that NPs, via their cGMP-forming guanylyl cyclase-A (GC-A) receptor and cGMP-dependent ki
31     Atrial natriuretic peptide (ANP) via its guanylyl cyclase-A (GC-A) receptor participates in regul
32                                              Guanylyl cyclase-A (GC-A) signaling, a natriuretic pepti
33 rtension decreases urine output, and second, guanylyl cyclase-A (GC-A), the primary signaling recepto
34                                              Guanylyl cyclase-A (GC-A), the transmembrane cGMP-produc
35  with endothelial-restricted deletion of the guanylyl cyclase-A receptor for ANP.
36 HF serums were active and generated cGMP via guanylyl cyclase-A receptors; however, the 180-minute sa
37       Atrial natriuretic peptide (ANP) binds guanylyl cyclase-A/natriuretic peptide receptor-A (GC-A/
38                    Inhibition of the soluble guanylyl cyclase abolished the effect of L-arginine on g
39                                              Guanylyl cyclase activating protein 1 (GCAP-1), a Ca(2+)
40                                              Guanylyl cyclase activating protein 1 (GCAP1), a member
41                                              Guanylyl cyclase activating protein 1 (GCAP1), after sub
42                        Two calcium-sensitive guanylyl cyclase activating proteins (GCAP1 and GCAP2) a
43 and cone photoreceptors by calcium-sensitive guanylyl cyclase activating proteins (GCAP1 and GCAP2) i
44 activity is modulated by the calcium-binding guanylyl cyclase activating proteins (GCAP1 and GCAP2).
45 etGC1 and RetGC2 isozymes using mice lacking guanylyl cyclase activating proteins GCAP1 and GCAP2 and
46                                              Guanylyl cyclase-activating protein 1 (GCAP-1) is an EF-
47 9C or E155G mutations of the retGC modulator guanylyl cyclase-activating protein 1 (GCAP-1), which pr
48                                              Guanylyl cyclase-activating protein 1 (GCAP1), a myristo
49 ackground light; similar effects are seen in guanylyl cyclase-activating protein knockout (GCAPs(-/-)
50                                              Guanylyl cyclase-activating proteins (GCAPs) are calcium
51          The photoreceptor-specific proteins guanylyl cyclase-activating proteins (GCAPs) bind and re
52 ane guanylyl cyclase 1 (RetGC1) regulated by guanylyl cyclase-activating proteins (GCAPs) controls ph
53  RetGC catalytic activity and stimulation by guanylyl cyclase-activating proteins (GCAPs).
54 icial effects of both nitric oxide-sensitive guanylyl cyclase activation and inhibition of the cGMP-d
55 ing, leading to NO production and subsequent guanylyl cyclase activation and K(ATP) channel opening i
56 al NMDARs and NOS stimulation and subsequent guanylyl cyclase activation that probably occurred in pe
57  important role in NO generation and soluble guanylyl cyclase activation under hypoxic conditions, wi
58        With the addition of nitrite, soluble guanylyl cyclase activation was significantly higher in
59 n but are well-tuned to the dynamic range of guanylyl cyclase activation.
60 th Exisulind, sulindac sulfide, OSI-461, the guanylyl cyclase activator YC-1, or the cell-permeable c
61  in distal human PASMCs treated with soluble guanylyl cyclase activators (nitric oxide donors and BAY
62 tors (VPAC2 and NPR-C), inhibit adenylyl and guanylyl cyclase activities, and stimulate cAMP-specific
63 uced dephosphorylation of NPR2 decreases its guanylyl cyclase activity in growth plate chondrocytes i
64 y changes, but the absence of GCAP2 affected guanylyl cyclase activity in two ways; (a) the maximal r
65  mouse GCAP2 produced similar effects on the guanylyl cyclase activity in wild type retinas.
66                                          The guanylyl cyclase activity is modulated by the calcium-bi
67 xposed to green light, whereas inhibition of guanylyl cyclase activity negatively affects fungal phot
68 n kinase Ialpha on the phosphate content and guanylyl cyclase activity of NPR-A.
69 in 20 min, LH treatment results in decreased guanylyl cyclase activity of NPR2, as determined in the
70               Therefore, GCAP2 regulation of guanylyl cyclase activity quickens the recovery of flash
71 y Ca(2+)-dependent binding of recoverin, (2) guanylyl cyclase activity via Ca(2+)-dependent GCAP prot
72 CAP1 and GCAP2, confer Ca(2+) sensitivity to guanylyl cyclase activity, but the importance and the co
73  The protein exhibits robust light-dependent guanylyl cyclase activity, whereas a truncated form lack
74 eta1-sGC protein content, and impair soluble guanylyl cyclase activity.
75 oso-N-acetyl-DL-penicillamine) and a soluble guanylyl cyclase agonist (YC-1) mimicked AMPA effect in
76 es an effector domain such as an adenylyl or guanylyl cyclase, all encoded in a single protein as a t
77 UCY1A3 encodes the alpha1 subunit of soluble guanylyl cyclase (alpha1-sGC), and CCT7 encodes CCTeta,
78                                     Although guanylyl cyclase and downstream cGMP are essential regul
79                  Dual stimulation of soluble guanylyl cyclase and inhibition of PDE5 activities also
80 signaling, was also inhibited by the soluble guanylyl cyclase and KATP channel blockers.
81  of injured aorta and in vitro by activating guanylyl cyclase and p38 MAPK.
82 imulatory role of NOS is mediated by soluble guanylyl cyclase and results from a cGMP-dependent stimu
83 cAMP receptor protein (CRP) is linked to the guanylyl cyclase and when deleted is deficient in cyst d
84         Nitric oxide (NO) stimulates soluble guanylyl cyclase and, thus, enhances cyclic guanosine mo
85 all previously uncharacterized receptor-type guanylyl cyclases and find them to be highly biased but
86 total of 27 gcy genes encoding receptor-type guanylyl cyclases and of 7 gcy genes encoding soluble gu
87 erotrimeric G proteins but is independent of guanylyl cyclases and the previously identified cGMP-ind
88 s issue, report direct communication between guanylyl cyclases and the Rac-p21-activated kinase (PAK)
89 s, harbors a catalytic center diagnostic for guanylyl cyclases and the recombinant AtPNP-R1 is capabl
90 porters, nitric oxide (NO) synthase, soluble guanylyl cyclase, and ATP-sensitive potassium (KATP) cha
91 cked by inhibitors of nitric oxide synthase, guanylyl cyclase, and calcium/calmodulin.
92 phosphorylation and inactivation of the NPR2 guanylyl cyclase, and cGMP hydrolysis is increased by ac
93 ing pathway involving nitric oxide synthase, guanylyl cyclase, and cGMP-dependent protein kinase (PKG
94 e roles of endothelium-derived vasodilators, guanylyl cyclase, and potassium channels were examined i
95 3-kinase, endothelial nitric oxide synthase, guanylyl cyclase, and protein kinase G (PKG).
96                    Signaling is both soluble guanylyl cyclase- and phosphodiesterase 6-dependent but
97  find that >41% (11/27) of all receptor-type guanylyl cyclases are expressed in the ASE gustatory neu
98 dely distributed across all kingdoms whereas guanylyl cyclases are generally thought to be restricted
99 g membrane-integral and soluble adenylyl and guanylyl cyclases, are central components in a wide rang
100             Whole cell cGMP measurements and guanylyl cyclase assays indicated that acute hyperosmola
101     C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic pep
102 ceptor for C-type natriuretic peptide (CNP), guanylyl cyclase B (GC-B, also known as Npr2 or NPR-B),
103                                    Thus, the guanylyl cyclase B receptor is critical for the developm
104  structure of human BNP to activate GC-A and guanylyl cyclase-B (GC-B), which is not reduced in heart
105 tor 3 and inactivating mutations in the NPR2 guanylyl cyclase both cause severe short stature, but ho
106 naling proteins, including eucaryal receptor guanylyl cyclases, but its function remains obscure.
107                          Blockade of soluble guanylyl cyclase by ODQ (1H-[1,2,4] oxadiazolo[4,3,-a]qu
108 l motility, through allosteric activation of guanylyl cyclases by autophosphorylated PAK.
109 ginine methyl ester) and blockade of soluble guanylyl cyclase (by ODQ; 1H-1,2,4-oxadiazolo[4,3-a]quin
110                                              Guanylyl cyclase C (GC-C) has been shown to be the prima
111                                              Guanylyl cyclase C (GC-C) is a multidomain, membrane-ass
112                                              Guanylyl cyclase C (GC-C) is expressed in intestinal epi
113                                              Guanylyl cyclase C (GC-C), an intestine-specific tumor s
114                                              Guanylyl cyclase C (GC-C), the receptor for diarrheageni
115 rgeting the intestinal cancer mucosa antigen guanylyl cyclase C (GCC) and its effect on inflammatory
116 ce colon cancer cell cytostasis by targeting guanylyl cyclase C (GCC) signaling.
117 tems, and the bacterial enterotoxin receptor guanylyl cyclase C (GCC), the principle source of cGMP i
118 ic tumors all express a unique surface-bound guanylyl cyclase C (GCC), which binds the diarrheagenic
119 ylin and uroguanylin, endogenous ligands for guanylyl cyclase C (GCC).
120 nuation of the colonic cell surface receptor guanylyl cyclase C (GUCY2C) that occurs due to loss of i
121                                              Guanylyl cyclase C (GUCY2C), a membrane-bound guanylyl c
122 enovirus (Ad5) combination regimen targeting guanylyl cyclase C (GUCY2C), a receptor expressed by int
123  endogenous ligands for the tumor suppressor guanylyl cyclase C (GUCY2C), disrupting a network of hom
124                       Conversely, activating guanylyl cyclase C in human colon cancer cells delayed c
125 prior to defining the baseline expression of guanylyl cyclase C mRNA, a marker for colorectal cancer,
126 ntrol of cGMP levels and that membrane-bound guanylyl cyclases can be critically modulated by other r
127 gether with Ca(2+)-dependent acceleration of guanylyl cyclase, can successfully account for changes i
128 of a type I (microbial) rhodopsin domain and guanylyl cyclase catalytic domain.
129 g 8-bromo-cGMP, as well as by the NO-soluble guanylyl cyclase-cGMP signaling inhibitor thrombospondin
130                                          The guanylyl cyclase/cGMP signaling triggers opening of KATP
131                   The nitric oxide-sensitive guanylyl cyclase/cGMP-dependent protein kinase type I si
132 AY-41-2272 converts the CO adduct of soluble guanylyl cyclase (CO-sGC) enzyme from a low- to high-out
133          The endogenous NO acts to stimulate guanylyl cyclase-coupled NO receptors in the axons, lead
134 ts in target cells by binding to specialized guanylyl cyclase-coupled receptors, resulting in cGMP ge
135 rough which NO generally acts is the soluble guanylyl cyclase-cyclic GMP (sGC-cGMP) pathway.
136                            Activation of the guanylyl cyclase-cyclic GMP-protein-kinase-G system with
137 tion of retinal arterioles via activation of guanylyl cyclase; cyclooxygenase plays a relatively mino
138 cretes cGMP when developing cysts and that a guanylyl cyclase deletion strain fails to synthesize cGM
139 n modification, biologically through soluble guanylyl-cyclase-dependent modulation of the MMP-9/TIMP-
140 e identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and m
141 levation of cGMP after activation of soluble guanylyl cyclase does not relax the muscle.
142 ion of the cyclase activity, we isolated the guanylyl cyclase domain from Escherichia coli with (GCwC
143 , combining a type I rhodopsin domain with a guanylyl cyclase domain.
144 eight different receptor-type, transmembrane guanylyl cyclases (encoded by gcy genes), which are expr
145 uanylyl cyclase C (GUCY2C), a membrane-bound guanylyl cyclase expressed in intestinal epithelial cell
146  segment of a natriuretic peptide receptor A guanylyl cyclase failed to bind GCAPs, but replacing its
147 nsory neurons (OSNs) expressing the receptor guanylyl cyclase GC-D, the cyclic nucleotide-gated chann
148 PSM2), RAP1GAP, and Gbeta5; cGMP modulators: guanylyl cyclase (GC) 1alpha1, GC1beta1, phosphodiestera
149 hat is lost when the predicted PEPR receptor guanylyl cyclase (GC) active site is mutated.
150 pr1 promoter activity and greatly stimulated guanylyl cyclase (GC) activity of the receptor protein i
151 activation of the intestinal receptor-enzyme guanylyl cyclase (GC) C, triggers an acute, watery diarr
152                  Phosphodiesterase (PDE) and guanylyl cyclase (GC) enzymes are key components of the
153                   RhoGC is a rhodopsin (Rho)-guanylyl cyclase (GC) gene fusion molecule that is centr
154                                      Soluble guanylyl cyclase (GC) is a heterodimer that is activated
155  and MyD88-dependent recruitment of platelet guanylyl cyclase (GC) toward the plasma membrane, follow
156 MP-receptive mechanisms and the inhibitor of guanylyl cyclase (GC), LY-83,583, on sleep in rats.
157 eptides and ATP activate and Go6976 inhibits guanylyl cyclase (GC)-A and GC-B.
158 hosphorylation is required for activation of guanylyl cyclase (GC)-A, also known as NPR-A or NPR1, by
159 gical effects in cells largely by activating guanylyl cyclase (GC)-coupled receptors, leading to cGMP
160 s (MSNs) that contain the NO effector enzyme guanylyl cyclase (GC).
161  of cGMP from its receptor, the NO-sensitive guanylyl cyclase (GC1).
162                                              Guanylyl cyclases (GCs) catalyze the conversion of GTP t
163 ions of phosphodiesterase (PDE6) and retinal guanylyl cyclases (GCs), and mutations in genes that dis
164  uses PAK to directly activate transmembrane guanylyl cyclases (GCs), leading to increased cellular c
165                                              Guanylyl cyclases (GCs), which synthesize the messenger
166 to the activation of receptor enzymes called guanylyl cyclases (GCs).
167 inct set of four known chemoreceptors of the guanylyl cyclase (gcy) gene family.
168 rect inhibitors of an NRE-localized receptor-guanylyl-cyclase, GCY-8, which synthesizes cyclic guanos
169 After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilat
170 s alters expression of AFD-specific receptor guanylyl cyclase genes.
171  hyperphosphorylation occurs through soluble guanylyl cyclase/guanosine 3',5'-cyclic monophosphate si
172        The three Drosophila atypical soluble guanylyl cyclases, Gyc-89Da, Gyc-89Db, and Gyc-88E, have
173         We find that the Drosophila receptor guanylyl cyclase Gyc76C genetically interacts with Semap
174        Recently, a separate class of soluble guanylyl cyclases has been identified that are only slig
175                                     Although guanylyl cyclases have been implicated in cell migration
176 on by the ligand NPPC, NPR2, the predominant guanylyl cyclase in follicular somatic cells, produces c
177 nated BlgC, was found to have photoactivated guanylyl cyclase in vitro.
178 cyclases and of 7 gcy genes encoding soluble guanylyl cyclases in the complete genome sequence of C.
179               BPIPP inhibited stimulation of guanylyl cyclases, including types A and B and soluble i
180 induced airway relaxation was resistant to a guanylyl cyclase inhibitor (ODQ) and a protein kinase G
181 ine dihydrochloride (1400W) and the specific guanylyl cyclase inhibitor 1-H (1, 2, 4)oxadiazolo[4,3-a
182 -nitro-L-arginine methyl ester (L-NAME), the guanylyl cyclase inhibitor 1H- [1,2,4]oxadiazolo[4,3-a]q
183 hylimidazoline-1-oxyl-3-oxide (PTIO) but not guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]qu
184      Porcine leaflets exposed to the soluble guanylyl cyclase inhibitor ODQ increased osteocalcin and
185 mediated depolarizations were blocked by the guanylyl cyclase inhibitor ODQ indicating involvement of
186                       Through the use of the guanylyl cyclase inhibitor ODQ, we demonstrate that nitr
187 nt with either a Ca(2+) channel blocker or a guanylyl cyclase inhibitor.
188 adiazolo-[4,3-a]quinoxalin-1-one) (a soluble guanylyl cyclase-inhibitor, Rp-8-(4-chlorophenylthio)-gu
189                   In addition to L-NAME, the guanylyl cyclase inhibitors ODQ and thrombospondin-1 als
190 Ps(-/-)) rods, indicating that regulation of guanylyl cyclase is not necessary for at least a part of
191                In cones, calcium feedback to guanylyl cyclase is potentially a key step in phototrans
192 lation of cGMP synthesis by retinal membrane guanylyl cyclase isozymes (RetGC1 and RetGC2) in rod and
193 nthesis in photoreceptor by retinal membrane guanylyl cyclase isozymes (RetGC1 and RetGC2) to expedit
194 ugh H(2)S does not directly activate soluble guanylyl cyclase, it maintains a tonic inhibitory effect
195 wn cells and agonists for either adenylyl or guanylyl cyclase, it was found that PDE1B2 predominantly
196 ice that lack NO-GC specifically in SMCs (SM-guanylyl cyclase knockout [GCKO]), ICCs (ICC-GCKO), or b
197 NP is a critical discriminator of binding to guanylyl cyclase-linked but not clearance natriuretic pe
198 ndicating that NO-induced AMPK activation is guanylyl cyclase-mediated and calcium-dependent.
199 n of Foxp3 in MBP-primed T cells via soluble guanylyl cyclase-mediated production of cGMP.
200  in the granulosa cells by the transmembrane guanylyl cyclase natriuretic peptide receptor 2 (NPR2) i
201 natriuretic peptide (CNP), its receptor, the guanylyl cyclase natriuretic peptide receptor 2 (Npr2),
202 granulosa cells, where it is produced by the guanylyl cyclase natriuretic peptide receptor 2 (NPR2).
203 eted disruption of the Npr1 gene (coding for guanylyl cyclase/natriuretic peptide receptor A (NPRA))
204 rial and brain natriuretic peptides activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NP
205 MCs) by acting on its receptor, NO-sensitive guanylyl cyclase (NO-GC).
206  the application of a nitric oxide-sensitive guanylyl cyclase (NO-sGC) receptor antagonist, a NOS inh
207 ow that one of these molecules, the receptor guanylyl cyclase Npr2, is required for bifurcation of th
208 hermore, inhibition of the NO target soluble guanylyl cyclase or of the cGMP effector kinase protein
209                        Inhibitors of soluble guanylyl cyclase or PKG decreased activity of the I425V
210 3-a]quinoxalon-1-one, a potent inhibitor for guanylyl cyclase, or 1,2-bis(2-aminophenoxy)ethane-N,N,N
211 that release nitric oxide, stimulate soluble guanylyl cyclase, or activate cGMP-dependent protein kin
212  all kingdoms of life, e.g. in human retinal guanylyl cyclase, our findings may be significant for ma
213 n suppressing Foxp3(+) Tregs via the soluble guanylyl cyclase pathway.
214 luding the insulin, TGF-beta, serotonin, and guanylyl cyclase pathways; however, the sensory processe
215  expression levels of particulate (membrane) guanylyl cyclases (pGC) and cGMP-specific phosphodiester
216 or repertoire of cilia-localized particulate guanylyl cyclases (pGC-G and pGC-A).
217 nic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed redu
218 3-kinase, endothelial nitric-oxide synthase, guanylyl cyclase, protein kinase G (PKG), and the mitoch
219    The effect of CORM-2 was not prevented by guanylyl-cyclase, protein kinase G, or thioredoxin inhib
220 e cytoplasmic Ca2+ concentration, activating guanylyl cyclase, raising cyclic GMP concentration, open
221 dly hypotensive and functions via a separate guanylyl cyclase receptor compared with CNP.
222 se (eNOS) by directly activating its soluble guanylyl cyclase receptor, rescued blood vessel function
223  inhibitors of NO synthase (NOS) and soluble guanylyl cyclase, respectively, abolished tadalafil indu
224 5'-cyclic monophosphate ([cGMP]i) by soluble guanylyl cyclase, resulting in fast onset and long-lasti
225 xide that retrogradely activated presynaptic guanylyl cyclase, resulting in the presynaptic expressio
226                             Retinal membrane guanylyl cyclase (RetGC) and Ca(2+)/Mg(2+) sensor protei
227 hat change the Ca(2+) sensitivity of retinal guanylyl cyclase (retGC) can result from an increase in
228 al for normal expression of retinal membrane guanylyl cyclase (RetGC) in photoreceptor cells, blocks
229 is an EF-hand protein that activates retinal guanylyl cyclase (RetGC) in photoreceptors at low free C
230  that inhibit retinal photoreceptor membrane guanylyl cyclase (retGC) in the dark when they bind Ca(2
231 (2+) sensor protein that accelerates retinal guanylyl cyclase (RetGC) in the light and decelerates it
232  depend on Ca(2+)-regulated retinal membrane guanylyl cyclase (RetGC), comprised of two isozymes, Ret
233                                      Retinal guanylyl cyclase (RetGC)-activating proteins (GCAPs) reg
234 hodiesterase (PDE6) or regulation of retinal guanylyl cyclase (retGC).
235 d Ca(2+) sensor in vision, regulates retinal guanylyl cyclase (RetGC).
236     The GUCY2D gene encodes retinal membrane guanylyl cyclase (RetGC1), a key component of the photot
237 +) in its EF-hands, stimulates photoreceptor guanylyl cyclase, RetGC1, in response to light.
238 rs is supported by a pair of retina-specific guanylyl cyclases, retGC1 and -2.
239 utations in the AFD-expressed gcy-8 receptor guanylyl cyclase (rGC) gene result in defects in the exe
240           We show that AFD-specific receptor guanylyl cyclases (rGCs) are instructive for thermosensa
241  the observation that multiple receptor-type guanylyl cyclases (rGCs), encoded by the gcy genes, and
242 onstrate the effect of NO donors and soluble guanylyl cyclase (sGC) activators in differentiation of
243 tives have been studied as potential soluble guanylyl cyclase (sGC) activators.
244  established endogenous modulator of soluble guanylyl cyclase (sGC) activity, but physiological, stru
245 ivatives and tested their effects on soluble guanylyl cyclase (sGC) activity.
246 es that the functional properties of soluble guanylyl cyclase (sGC) are affected not only by the bind
247 dentified the alpha1-subunit gene of soluble guanylyl cyclase (sGC) as a novel androgen-regulated gen
248 nsertion is key during maturation of soluble guanylyl cyclase (sGC) because it enables sGC to recogni
249 es with the oxidation of the heme of soluble guanylyl cyclase (sGC) critically implicated in some of
250                             Although soluble guanylyl cyclase (sGC) functions in an environment in wh
251 nine (NMMA); 300 or 500 microM) or a soluble guanylyl cyclase (sGC) inhibitor (1H-[1,2,4]oxadiazolo[4
252 ell volume that was abolished by the soluble guanylyl cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,
253 -arginine methyl ester; 30 mg/kg), a soluble guanylyl cyclase (sGC) inhibitor [1H-(1, 2, 4) oxadiazol
254 either a nitric oxide scavenger or a soluble guanylyl cyclase (sGC) inhibitor diminished the benefici
255    Diatomic ligand discrimination by soluble guanylyl cyclase (sGC) is paramount to cardiovascular ho
256                                      Soluble guanylyl cyclase (sGC) is the principal receptor for NO
257                                      Soluble guanylyl cyclase (sGC) is the receptor for nitric oxide
258 MP levels in this pathway, including soluble guanylyl cyclase (sGC) itself, the NO -activated form of
259  and cGMP in the above effects using soluble guanylyl cyclase (sGC) or adenylate cyclase (AC) specifi
260                                      Soluble guanylyl cyclase (sGC) plays an important role in cardio
261                      The NO receptor soluble guanylyl cyclase (sGC) was detected immunocytochemically
262 d neuronal systems via activation of soluble guanylyl cyclase (sGC), a heme-containing heterodimer.
263 ch encodes the alpha1 subunit of the soluble guanylyl cyclase (sGC), a key enzyme in the nitric oxide
264   They were tested for activation of soluble guanylyl cyclase (sGC), a key enzyme in the NO/cGMP sign
265                                      Soluble guanylyl cyclase (sGC), a key protein in the NO/cGMP sig
266 nal nitric oxide synthase (nNOS) and soluble guanylyl cyclase (sGC), and can be mimicked by the nitri
267 the major downstream effector of NO, soluble guanylyl cyclase (sGC), in the superficial dorsal horn o
268 the major downstream effector of NO, soluble guanylyl cyclase (sGC), is very limited.
269 the major downstream effector of NO, soluble guanylyl cyclase (sGC), is very limited.
270  through activation of its receptor, soluble guanylyl cyclase (sGC), leading to elevation of intracel
271 noxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase (sGC), or Rp-8-Br-cGMP, an inhibitor of
272 presence of inhibitors selective for soluble guanylyl cyclase (sGC), PKG, calmodulin, CaMKII or ERK1/
273 ural homology to the beta subunit of soluble guanylyl cyclase (sGC), suggesting a NO sensing function
274  homologous to the central region in soluble guanylyl cyclase (sGC), the main receptor for nitric oxi
275 ular mechanism of desensitization of soluble guanylyl cyclase (sGC), the NO receptor, has long remain
276                                      Soluble guanylyl cyclase (sGC), the principle "receptor" for nit
277 ly vasoactive through stimulation of soluble guanylyl cyclase (sGC), which produces the second messen
278  to determine whether NO activates a soluble guanylyl cyclase (sGC)-cyclic guanosine monophosphate (c
279 tivating its intracellular receptor, soluble guanylyl cyclase (sGC).
280 light source, to activate the enzyme soluble guanylyl cyclase (sGC).
281 organic nitrate to the activation of soluble guanylyl cyclase (sGC).
282 organic nitrate to the activation of soluble guanylyl cyclase (sGC).
283                   We compared the NO/soluble guanylyl cyclase (sGC)/cGMP pathway in human glioma tiss
284 ed the role of the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cGMP/cGMP-dependent protein kinas
285 tes a pool of oxidized and heme-free soluble guanylyl cyclase (sGC; see the related article beginning
286 her the classical, nitric oxide (NO)-soluble guanylyl-cyclase (sGC)-cGMP pathway could modulate Ca(2)
287 O) receptor (alpha1.beta1 isoform of soluble guanylyl cyclase, sGC) is not known.
288                         It has an unusual 7% guanylyl cyclase side-activity.
289 s, evolutionary diversification of primitive guanylyl cyclase signaling pathways allows GUCY2C to coo
290 chieved by activating the endogenous soluble guanylyl cyclase that produces cGMP.
291 at this toxin is a dual soluble adenylyl and guanylyl cyclase that results in intracellular cAMP and
292 peptide receptor B (NPR-B) are transmembrane guanylyl cyclases that catalyze the synthesis of cGMP in
293 ructural diversity of microbial adenylyl and guanylyl cyclases, the enzymes that synthesize cAMP and
294 olar concentrations of nitric oxide activate guanylyl cyclase to produce cGMP, which has diverse phys
295 canonical 5'-3' DNA polymerases and adenylyl/guanylyl cyclases, two enzyme families known to use a tw
296 its receptor on the intestinal brush border, guanylyl cyclase type C (GC-C).
297                       To convert BlaC into a guanylyl cyclase, we constructed a model of the nucleoti
298                             Although soluble guanylyl cyclase (which generates cyclic guanosine monop
299 yclase, which synthesizes cGMP, or a mutated guanylyl cyclase, which synthesizes cAMP.
300 e conditional expression of either wild-type guanylyl cyclase, which synthesizes cGMP, or a mutated g

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top