戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1  its ubiquitination and for stabilization of hamartin.
2 phosphorylation and reduced interaction with hamartin.
3 y ubiquitinated, and was unable to stabilize hamartin.
4  attenuates the phosphorylation of exogenous hamartin.
5 S6K pathway due to loss of the Tsc1 protein, hamartin.
6 n, vimentin, and desmin are not able to bind hamartin.
7 es reveal that Tuberin, when associated with Hamartin, acts as a Rheb GTPase-activating protein.
8        Plk1 interacts with the N-terminus of hamartin (amino acids 1-880), which contains two potenti
9                                              Hamartin (amino acids 302-430) and tuberin (amino acids
10                                  A region of hamartin (amino acids 719-998) predicted to encode coile
11  reveal a novel subcellular localization for hamartin and a novel interaction partner for the hamarti
12 r the hamartin/tuberin complex and implicate hamartin and mTOR in the regulation of centrosome duplic
13 ed to the centrosome and that phosphorylated hamartin and phosphorylated tuberin co-immunoprecipitate
14 esize that the cell proliferative effects of hamartin and tuberin are partly mediated through beta-ca
15                                              Hamartin and tuberin are products of the tumor suppresso
16                                       Third, hamartin and tuberin blocked the ability of amino acids
17                                      Indeed, hamartin and tuberin co-immunoprecipitated with glycogen
18                In cultured cortical neurons, hamartin and tuberin co-localize with neurofilament ligh
19          To address these issues a series of hamartin and tuberin constructs were used to assay for i
20                                              Hamartin and tuberin form a heterodimer that functions a
21                                              Hamartin and tuberin form a heterodimer that inhibits th
22                            The gene products hamartin and tuberin form the TSC complex that acts as G
23 tenin but not by Disheveled, suggesting that hamartin and tuberin function at the level of the beta-c
24                           Here, we show that hamartin and tuberin function together to inhibit mammal
25 vide further genetic evidence for individual hamartin and tuberin functions that may explain some of
26                                      Indeed, hamartin and tuberin have been shown to interact stably
27                        Our data suggest that hamartin and tuberin negatively regulate beta-catenin st
28 ain development as downstream effects of the hamartin and tuberin pathway in TSC.
29                       First, coexpression of hamartin and tuberin repressed phosphorylation of 4E-BP1
30 usative genes, TSC1 and TSC2, which code for hamartin and tuberin respectively, play central roles in
31                      However, the regions of hamartin and tuberin that interact have not been well de
32 ity of S6K1 was repressed by coexpression of hamartin and tuberin, but the activity of rapamycin-resi
33                        Critical functions of hamartin and tuberin, encoded by the TSC1 and TSC2 genes
34                 Normal cellular functions of hamartin and tuberin, encoded by the TSC1 and TSC2 tumor
35     BDNF treatment rapidly reduced levels of hamartin and tuberin, negative regulators of mTOR, in a
36                 TSC1 and TSC2 (also known as hamartin and tuberin, respectively) form a functional co
37       The proteins encoded by TSC1 and TSC2, hamartin and tuberin, respectively, associate with each
38                      Their protein products, hamartin and tuberin, respectively, form a functional co
39 ene products of TSC1 and TSC2, also known as hamartin and tuberin, respectively, form a physical and
40      The TSC1 and TSC2 proteins, also called hamartin and tuberin, respectively, have been shown to r
41     The products of the TSC1 and TSC2 genes, hamartin and tuberin, respectively, heterodimerize and i
42 ions in the TSC1 or TSC2 genes, which encode hamartin and tuberin, respectively.
43  suppressor genes TSC1 or TSC2, which encode hamartin and tuberin, respectively.
44 suppressor genes, TSC1 and TSC2, that encode hamartin and tuberin, respectively.
45 SC2 genes, which encode the protein products hamartin and tuberin, respectively.
46                                              Hamartin and tuberin, the products of the TSC1 and TSC2
47                                              Hamartin and tuberin, the products of TSC1 and TSC2, res
48 eport, we demonstrate an interaction between hamartin and tuberin, which is detectable at endogenous
49  in critical growth suppressing functions of hamartin and tuberin.
50                        Ectopic expression of hamartin and wild-type tuberin, but not mutant tuberin,
51  from its membrane-bound activation partner (hamartin) and its target GTPase (Rheb) to relieve the gr
52 tuberous sclerosis complex (TSC) genes TSC1 (hamartin) and/or TSC2 (tuberin).
53 ng and dendritic protein synthesis via PTEN, hamartin, and tuberin degradation.
54 t sufficient to mediate the interaction with hamartin, as more N-terminal residues were also required
55 hat cyclin-dependent kinase 1 phosphorylates hamartin at three sites, one of which (Thr417) is in the
56 sites (T417, S584 and T1047) does not impact hamartin binding to Plk1.
57                            Here we show that hamartin binds the neurofilament light chain and it is p
58                            This allele binds hamartin but has a deletion in the C terminus of tuberin
59                                 We show that hamartin colocalizes with hypophosphorylated tuberin at
60 and every interacting partner of the tuberin-hamartin complex could potentially alter the disease pre
61 ed as an interactor of Myc, with the tuberin-hamartin complex in the brain.
62 n and proteasomal degradation of the tuberin-hamartin complex particularly in the CNS.
63 the tumor suppressor function of the tuberin/hamartin complex, resulting in increased mTOR signaling
64  mTOR, and increased assembly of the tuberin-hamartin complex.
65                     This new murine model of hamartin deficiency exhibits a more severe phenotype tha
66                                              Hamartin (encoded by TSC1) and S6K was expressed in all
67                               Suppression of hamartin expression with TSC1 shRNA viral vectors both i
68                                  Tuberin and hamartin form a complex that inhibits signaling by the m
69                                  Tuberin and Hamartin form a tumor suppressor heterodimer that inhibi
70                                  Tuberin and hamartin function together as a complex in mammals and D
71 e show that at endogenous expression levels, hamartin has a punctate pattern of immunofluorescence in
72 , predicted to encode a novel protein termed hamartin, has recently been cloned from 9q34.
73                Overexpression of the Tuberin-Hamartin heterodimer inhibits Rheb-mediated S6K1 activat
74                    Here we show that tuberin-hamartin heterodimers block protein kinase C (PKC)/MAPK-
75 l neurons, Pam co-localizes with tuberin and hamartin in neurites and growth cones.
76              Taken together, the presence of hamartin in the membrane/particulate fraction and its pa
77                            Overexpression of hamartin increased resistance to OGD by inducing product
78                                  Tuberin and hamartin inhibit signaling by the mammalian target of ra
79 ng partner hamartin, suggesting that tuberin-hamartin interactions negatively impact the ability of t
80                               Phosphorylated hamartin interacts with Plk1 independent of tuberin with
81                             We conclude that hamartin is a growth inhibitory protein whose biological
82 embly of the mTOR regulatory complex Tuberin.Hamartin is disrupted in L6 myoblasts following small in
83 ression of tuberin inhibits cell growth, and hamartin is known to bind tuberin, these results suggest
84                         Here, we report that hamartin is localized to the centrosome and that phospho
85                                              Hamartin is localized to the membrane/particulate (P100)
86 al tuberin, indicating that the stability of hamartin is not dependent on its interaction with tuberi
87 ile the fraction of tuberin that is bound to hamartin is not ubiquitinated.
88               Previously, we have shown that hamartin is phosphorylated by CDC2/cyclin B1 during the
89                                              Hamartin is present in a cell line derived from the Eker
90         Here, we demonstrate that endogenous hamartin is threonine-phosphorylated during nocodazole-i
91 he tuberous sclerosis complex 1 gene (TSC1), hamartin, is selectively induced by ischemia in hippocam
92 rlie tuberous sclerosis complex, tuberin and hamartin, lie at the center of an important signal trans
93               These results demonstrate that hamartin may anchor neuronal intermediate filaments to t
94 ct with Plk1, whereas a non-phosphorylatable hamartin mutant at residue S332 in conjunction with alan
95                       A non-phosphorylatable hamartin mutant with an alanine substitution at residue
96 cated within the putative binding regions of hamartin (N198_F199delinsI;593-595delACT) or tuberin (G2
97                                              Hamartin negatively regulates the protein levels of Plk1
98 elic inactivation of either TSC genes (TSC1, hamartin or TSC2, tuberin), an event that is implicated
99 ygosity of either TSC1 or TSC2, which encode Hamartin or Tuberin, respectively.
100 y heterozygous mutations in either the TSC1 (hamartin) or the TSC2 (tuberin) gene.
101 ss of function of the tumor suppressor TSC1 (hamartin) or TSC2 (tuberin) and increased angiogenesis,
102 gous mutations in either of two genes, TSC1 (hamartin) or TSC2 (tuberin), are responsible for most ca
103 ated with mutations in TSC1, which codes for hamartin, or TSC2, which codes for tuberin.
104 ingly, in the distal part of the growth cone hamartin overlaps with the ezrin-radixin-moesin family o
105 athway in response to growth factors and how hamartin participates in this process.
106  support a model in which phosphorylation of hamartin regulates the function of the hamartin-tuberin
107 erodimer with the TSC1 gene product TSC1, or hamartin, resulting in a reduction in phosphorylation, a
108 the tuberous sclerosis-1 (TSC1) gene product hamartin results in the inhibition of growth, as well as
109 o bind tuberin, these results suggested that hamartin stabilizes tuberin and this contributes to the
110 's predominant intracellular binding partner hamartin, suggesting that tuberin-hamartin interactions
111                              The function of hamartin, the product of TSC1, is not known.
112                                              Hamartin, the protein product of TSC1, was found to inte
113            In addition, the p70S6K inhibitor hamartin transduced into cells as active protein, interf
114 ing expression of the tuberin (TSC2(-/-)) or hamartin (TSC1(-/-)) genes, consistent with the known ne
115 olipoma showed positive immunoreactivity for hamartin (TSC1) and loss of immunoreactivity for tuberin
116  in either TSC1 or TSC2, whose gene products hamartin (TSC1) and tuberin (TSC2) constitute a putative
117                           Phosphorylation of hamartin (TSC1) by CDK1 also negatively regulates the ac
118                          We report here that hamartin (TSC1) localizes to the basal body of the prima
119 nt disorder caused by loss or malfunction of hamartin (tsc1) or tuberin (tsc2).
120 on of hamartin regulates the function of the hamartin-tuberin complex during the G2/M phase of the ce
121               However, the regulation of the hamartin-tuberin complex in the context of the physiolog
122 ight chain and it is possible to recover the hamartin-tuberin complex over the neurofilament light ch
123 ritical for some of the CNS functions of the hamartin-tuberin complex, and abolishing this through mu
124 reased the inhibition of p70S6 kinase by the hamartin-tuberin complex.
125 her demonstrate that Akt/PKB associates with hamartin-tuberin complexes, promoting phosphorylation of
126 tion of tuberin and increased degradation of hamartin-tuberin complexes.
127 by PI3K/Akt is a major mechanism controlling hamartin-tuberin function.
128 three sites, one of which (Thr417) is in the hamartin-tuberin interaction domain.
129 nd -4EBP1 expression in GCs reflects loss of hamartin-tuberin-mediated mTOR pathway inhibition.
130 rtin and a novel interaction partner for the hamartin/tuberin complex and implicate hamartin and mTOR
131 lso negatively regulates the activity of the hamartin/tuberin complex.
132 hese findings strongly implicate the tuberin-hamartin tumor suppressor complex as an inhibitor of mTO
133                              In CA1 neurons, hamartin was unaffected by ischemia but was upregulated
134          Co-expression of tuberin stabilized hamartin, which is weakly ubiquitinated, in transiently
135                                              Hamartin with alanine mutations in the three cyclin-depe
136 ns, and we have validated the interaction of hamartin with moesin.
137                               Interaction of hamartin with tuberin forms a heterodimer that inhibits

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top