コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 ITD, play a major role in the development of hematopoietic malignancy.
2 ncogenic role of the BTB/POZ-domain genes in hematopoietic malignancy.
3 aly, immunodeficiency, and predisposition to hematopoietic malignancy.
4 rocessing and autoantigen repertoire in this hematopoietic malignancy.
5 ing HH/GLI and PI3K signaling in this common hematopoietic malignancy.
6 gulating B-cell progenitor proliferation and hematopoietic malignancy.
7 a function for TET1 as a tumor suppressor of hematopoietic malignancy.
8 HD1 is underexpressed in many types of human hematopoietic malignancy.
9 ed to a variety of partner genes in multiple hematopoietic malignancies.
10 al role of VentX in the clinical behavior of hematopoietic malignancies.
11 p between cell motility and tumor relapse in hematopoietic malignancies.
12 wever, mutations in this pathway are rare in hematopoietic malignancies.
13 te dehydrogenase 1 (IDH1) are key drivers of hematopoietic malignancies.
14 ional therapeutic tools for the treatment of hematopoietic malignancies.
15 et for Bortezomib and apoptotic effectors in hematopoietic malignancies.
16 is and which has been strongly implicated in hematopoietic malignancies.
17 possibility of targeting B cells in certain hematopoietic malignancies.
18 Chromosomal translocations are a hallmark of hematopoietic malignancies.
19 gements analogous to those observed in human hematopoietic malignancies.
20 ne antibiotic agent used in the treatment of hematopoietic malignancies.
21 forts to modulate Ras signaling for treating hematopoietic malignancies.
22 ehaves as a tumor suppressor gene in certain hematopoietic malignancies.
23 lymphopoiesis and previously associated with hematopoietic malignancies.
24 ABL1 and ETV6-PDGFRbeta are common causes of hematopoietic malignancies.
25 lymphopoiesis and have been associated with hematopoietic malignancies.
26 n is predicted to be responsible for myeloid hematopoietic malignancies.
27 iency of Runx1 can indeed predispose mice to hematopoietic malignancies.
28 otypic manifestations of Runx1 deficiency in hematopoietic malignancies.
29 se inhibitor, for treatment of FGFR3-induced hematopoietic malignancies.
30 is implicated in multiple myeloma and other hematopoietic malignancies.
31 Benzene is a human carcinogen that induces hematopoietic malignancies.
32 immune suppression and for the treatment of hematopoietic malignancies.
33 of aberrant PML sequence variations in other hematopoietic malignancies.
34 ppaB subunit, has been reported in solid and hematopoietic malignancies.
35 immune suppression and for the treatment of hematopoietic malignancies.
36 ommon deleted region associated with myeloid hematopoietic malignancies.
37 ys is a major oncogenic mechanism underlying hematopoietic malignancies.
38 owever, little is known about its effects on hematopoietic malignancies.
39 ctivation has been primarily demonstrated in hematopoietic malignancies.
40 this region are frequently found in various hematopoietic malignancies.
41 whereas HTLV-II has not been associated with hematopoietic malignancies.
42 and are potential serum markers for certain hematopoietic malignancies.
43 te Huntingtin or HIP1 in the pathogenesis of hematopoietic malignancies.
44 verexpressed in certain human epithelial and hematopoietic malignancies.
45 he genetically defined midline carcinoma and hematopoietic malignancies.
46 d sarcoma of the chest wall), and three were hematopoietic malignancies.
47 In patients with hematopoietic malignancies.
48 ed that KDM2B exhibits a dichotomous role in hematopoietic malignancies.
49 eloid progenitor cell growth in a variety of hematopoietic malignancies.
50 une disease, and nonrandom translocations in hematopoietic malignancies.
51 of PRC2 and its mutations were identified in hematopoietic malignancies.
52 sive hematopoietic cancers and away from non-hematopoietic malignancies.
53 in Myc-driven B-cell lymphoma and five other hematopoietic malignancies.
54 Chromosomal translocations are a hallmark of hematopoietic malignancies.
55 al defects, impaired cell reprogramming, and hematopoietic malignancies.
56 s opposing roles in developmentally distinct hematopoietic malignancies.
57 nd overexpression found in cancer, including hematopoietic malignancies.
58 ith emerging NK cell-based therapies against hematopoietic malignancies.
59 the critical role of ECs in the pathology of hematopoietic malignancies.
60 as not detected on normal SC or LSC in other hematopoietic malignancies.
61 nase that functions as a tumor suppressor in hematopoietic malignancies.
62 rapeutic target in treating various types of hematopoietic malignancies.
63 tor (TF) activities are commonly observed in hematopoietic malignancies.
64 treatment of patients with solid tumors and hematopoietic malignancies.
65 tion of the hematopoietic stem cell niche in hematopoietic malignancies.
66 p-regulation of DKK1, a molecule involved in hematopoietic malignancies.
67 ansducer is essential for the maintenance of hematopoietic malignancies.
68 ients with aggressive and difficult-to-treat hematopoietic malignancies.
69 ole in normal hematopoiesis and a variety of hematopoietic malignancies.
70 miR-22/TET2 regulatory network are common in hematopoietic malignancies.
71 e as a novel therapeutic target for treating hematopoietic malignancies.
72 ged as potential treatment of metastatic and hematopoietic malignancies.
73 in normal hematopoietic differentiation and hematopoietic malignancies.
74 ongation and the formation of transplantable hematopoietic malignancies.
75 of human cancers and are highly prevalent in hematopoietic malignancies.
76 should be useful in the treatment of various hematopoietic malignancies.
77 rom cellular damage are essential to prevent hematopoietic malignancies.
78 nction mutations of SHP2 are associated with hematopoietic malignancies.
79 nctions in the initiation and maintenance of hematopoietic malignancies.
80 ersions, are associated with a wide array of hematopoietic malignancies.
81 STAT5B is often mutated in hematopoietic malignancies.
82 ic cells including B-cell precursors, and in hematopoietic malignancies.
83 should be useful in the treatment of various hematopoietic malignancies.
85 c leukemia/lymphoma (T-ALL) is an aggressive hematopoietic malignancy affecting both children and adu
87 to two other fusion proteins found in lympho-hematopoietic malignancies, anaplastic large cell lympho
89 he human hRgr transcript in a panel of human hematopoietic malignancies and found that a truncated fo
92 which indicates that these cases are clonal hematopoietic malignancies and should be reclassified as
97 ypes, but risk patterns differed by specific hematopoietic malignancies and the sex of the relative,
98 w is to understand the role of Trib genes in hematopoietic malignancies and their potential as target
101 echanisms behind aberrant DNA methylation in hematopoietic malignancy and discuss its importance in c
102 ns such as idiopathic pulmonary fibrosis and hematopoietic malignancies, and (e) the successful progr
103 human PICALM gene are present in aggressive hematopoietic malignancies, and genome-wide association
106 hematopoietic niches are altered in certain hematopoietic malignancies, and we discuss how these alt
108 infections secondary to immunodeficiency and hematopoietic malignancies are major causes of morbidity
109 -of-function (GOF) mutations of SHP-2 induce hematopoietic malignancies are not fully understood.
110 C) function and increased risk of developing hematopoietic malignancies are severe and concerning com
112 itors that hold promise for the treatment of hematopoietic malignancies as well as for inflammatory a
113 to a range of cancers, particularly lung and hematopoietic malignancies, as well as development of ch
114 31.2, a region that is frequently deleted in hematopoietic malignancies, as well as in epithelial tum
116 poietic stem cell transplantation (HSCT) for hematopoietic malignancies at a single institution.
117 stem cell source for pediatric patients with hematopoietic malignancies because of its ability to con
118 killer (NK) cell-based immunotherapies treat hematopoietic malignancies, but are less effective again
119 fers effective control and potential cure of hematopoietic malignancies, but with the cost of associa
120 et al for the first time link ILCs to human hematopoietic malignancies by identifying a clear correl
121 TL1 contributes to the development of 20q(-) hematopoietic malignancies by inducing replicative stres
122 ukemia/lymphoma as well as a model for other hematopoietic malignancies characterized by nuclear fact
124 Advanced systemic mastocytosis (SM), a fatal hematopoietic malignancy characterized by drug resistanc
126 Health Organization (WHO) classification of hematopoietic malignancies defines several types of matu
127 ymphoblastic leukemia (T-ALL) is an immature hematopoietic malignancy driven mainly by oncogenic acti
128 , and amplifications, all of which result in hematopoietic malignancies due to sustained HOX expressi
129 r the treatment of several tumors, including hematopoietic malignancies, due to its antiproliferative
130 at is characterized by recurrent infections, hematopoietic malignancies, eczema, and thrombocytopenia
136 ritical treatment of patients with high-risk hematopoietic malignancies, hematological deficiencies,
137 ossibility of offering UCBT to patients with hematopoietic malignancies; IB-UCBT is associated with f
138 ociated antigen, have shown activity against hematopoietic malignancies in clinical trials, but this
140 Lymph) to evaluate NHL risk among those with hematopoietic malignancies in first-degree relatives.
143 cifically inactivated by hypermethylation in hematopoietic malignancies in the absence of p16(INK4a)
145 6) exerts oncogenic effects in several human hematopoietic malignancies including chronic myeloid leu
146 the involvement of tumor suppressor genes in hematopoietic malignancies including those involved in c
147 28 different partner genes in patients with hematopoietic malignancies, including acute myeloid leuk
148 xpression contributes to the pathogenesis of hematopoietic malignancies, including chronic lymphocyti
150 ied intensively for the treatment of diverse hematopoietic malignancies, including lethal multiple my
152 unique procedure, primarily in patients with hematopoietic malignancies, involving chemoradiotherapy
153 n of biologic markers for disease outcome in hematopoietic malignancies is essential for the developm
155 -1, -2, and -3) in cancers, particularly the hematopoietic malignancies, is believed to play a role i
156 cancers, LDK selectively affects survival of hematopoietic malignancy lines and primary leukemias, in
157 d therapies are highly effective in selected hematopoietic malignancies, most have shown limited effi
159 unoreactive myeloid leukemias similar to the hematopoietic malignancies observed in older Nf1+/- mice
160 early stage intervention in the treatment of hematopoietic malignancy.Oncogene advance online publica
161 mbocytopenia has no evident association with hematopoietic malignancy or progression to aplastic anem
162 that result from oncogenic transformation in hematopoietic malignancies, regulate the ability of NS t
164 nic role of NRAS, KRAS, and NF1 mutations in hematopoietic malignancies, relevant animal models of th
165 and genotoxicity, which usually manifest as hematopoietic malignancy, represent major barriers to re
166 Recent studies in both solid tumors and hematopoietic malignancies showed that ceRNAs have signi
167 ution hazard ratio=1.54; 95% CI, 1.15-2.06), hematopoietic malignancy (subdistribution hazard ratio=1
168 c-ABL gene are well known to be involved in hematopoietic malignancies such as chronic myeloid leuke
170 east, skin, conjunctiva, liver and prostate; hematopoietic malignancies such as Hodgkin's lymphoma, p
171 ent of apoptosis in Rad50(S/S) mice promotes hematopoietic malignancy, suggesting that primitive hema
172 increased risk of subsequently developing a hematopoietic malignancy, suggesting that these mutation
173 e recent discovery of rare STAT mutations in hematopoietic malignancies suggests that STAT mutants ma
174 ndings of frequent N-ras activation in human hematopoietic malignancies support a role for L-744,832
175 r advancing our understanding of MYC-induced hematopoietic malignancies, Suzanne Cory and her associa
176 increasing number of recognizable heritable hematopoietic malignancy syndromes while also deepening
178 ted protein tyrosine kinases associated with hematopoietic malignancies, TEL/PDGFbetaR is invariably
179 eukemia virus type 1 (HTLV-1) causes a fatal hematopoietic malignancy termed adult T cell leukemia (A
180 s suggest that AN-9 is a selective agent for hematopoietic malignancies that can circumvent the mecha
181 -cell lymphomas (CTCLs) represent a group of hematopoietic malignancies that home to the skin and hav
182 c myelomonocytic leukemia (CMML) is a clonal hematopoietic malignancy that may deserve specific manag
183 in the pathogenesis of Alzheimer disease and hematopoietic malignancies through its aberrant processi
184 tion (HCT) is the most effective therapy for hematopoietic malignancies through T-cell-mediated graft
185 o address a possible involvement of HePTP in hematopoietic malignancies we sought to identify HePTP s
186 f Id1 could contribute to the development of hematopoietic malignancy, we reconstituted mice with hem
188 syndrome is most frequently associated with hematopoietic malignancies with a high growth fraction,
189 d leukemia (AML) is a heterogeneous group of hematopoietic malignancies with variable response to tre
190 d leukemia (AML) is a group of heterogeneous hematopoietic malignancies with various chromosomal and/
191 ats could be a common mechanism of inherited hematopoietic malignancy with implications for the role
192 almost all of the mice eventually developed hematopoietic malignancies, with a significant percentag
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。